Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexralbidv | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
Ref | Expression |
---|---|
2rexbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexralbidv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2rexbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | ralbidv 3120 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
3 | 2 | rexbidv 3225 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wral 3063 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-ral 3068 df-rex 3069 |
This theorem is referenced by: freq1 5550 rexfiuz 14987 cau3lem 14994 caubnd2 14997 climi 15147 rlimi 15150 o1lo1 15174 2clim 15209 lo1le 15291 caucvgrlem 15312 caurcvgr 15313 caucvgb 15319 vdwlem10 16619 vdwlem13 16622 pmatcollpw2lem 21834 neiptopnei 22191 lmcvg 22321 lmss 22357 elpt 22631 elptr 22632 txlm 22707 tsmsi 23193 ustuqtop4 23304 isucn 23338 isucn2 23339 ucnima 23341 metcnpi 23606 metcnpi2 23607 metucn 23633 xrge0tsms 23903 elcncf 23958 cncfi 23963 lmmcvg 24330 lhop1 25083 ulmval 25444 ulmi 25450 ulmcaulem 25458 ulmdvlem3 25466 pntibnd 26646 pntlem3 26662 pntleml 26664 axtgcont1 26733 perpln1 26975 perpln2 26976 isperp 26977 brbtwn 27170 uvtx01vtx 27667 isgrpo 28760 ubthlem3 29135 ubth 29136 hcau 29447 hcaucvg 29449 hlimi 29451 hlimconvi 29454 hlim2 29455 elcnop 30120 elcnfn 30145 cnopc 30176 cnfnc 30193 lnopcon 30298 lnfncon 30319 riesz1 30328 xrge0tsmsd 31219 signsply0 32430 unblimceq0 34614 limcleqr 43075 addlimc 43079 0ellimcdiv 43080 climd 43103 climisp 43177 lmbr3 43178 climrescn 43179 climxrrelem 43180 climxrre 43181 xlimpnfxnegmnf 43245 xlimxrre 43262 xlimmnf 43272 xlimpnf 43273 xlimmnfmpt 43274 xlimpnfmpt 43275 dfxlim2 43279 cncfshift 43305 cncfperiod 43310 ioodvbdlimc1lem1 43362 ioodvbdlimc1lem2 43363 ioodvbdlimc2lem 43365 fourierdlem68 43605 fourierdlem87 43624 fourierdlem103 43640 fourierdlem104 43641 etransclem48 43713 |
Copyright terms: Public domain | W3C validator |