Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexralbidv | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
Ref | Expression |
---|---|
2rexbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexralbidv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2rexbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | ralbidv 3112 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
3 | 2 | rexbidv 3226 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wral 3064 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-ral 3069 df-rex 3070 |
This theorem is referenced by: freq1 5559 rexfiuz 15059 cau3lem 15066 caubnd2 15069 climi 15219 rlimi 15222 o1lo1 15246 2clim 15281 lo1le 15363 caucvgrlem 15384 caurcvgr 15385 caucvgb 15391 vdwlem10 16691 vdwlem13 16694 pmatcollpw2lem 21926 neiptopnei 22283 lmcvg 22413 lmss 22449 elpt 22723 elptr 22724 txlm 22799 tsmsi 23285 ustuqtop4 23396 isucn 23430 isucn2 23431 ucnima 23433 metcnpi 23700 metcnpi2 23701 metucn 23727 xrge0tsms 23997 elcncf 24052 cncfi 24057 lmmcvg 24425 lhop1 25178 ulmval 25539 ulmi 25545 ulmcaulem 25553 ulmdvlem3 25561 pntibnd 26741 pntlem3 26757 pntleml 26759 axtgcont1 26829 perpln1 27071 perpln2 27072 isperp 27073 brbtwn 27267 uvtx01vtx 27764 isgrpo 28859 ubthlem3 29234 ubth 29235 hcau 29546 hcaucvg 29548 hlimi 29550 hlimconvi 29553 hlim2 29554 elcnop 30219 elcnfn 30244 cnopc 30275 cnfnc 30292 lnopcon 30397 lnfncon 30418 riesz1 30427 xrge0tsmsd 31317 signsply0 32530 unblimceq0 34687 limcleqr 43185 addlimc 43189 0ellimcdiv 43190 climd 43213 climisp 43287 lmbr3 43288 climrescn 43289 climxrrelem 43290 climxrre 43291 xlimpnfxnegmnf 43355 xlimxrre 43372 xlimmnf 43382 xlimpnf 43383 xlimmnfmpt 43384 xlimpnfmpt 43385 dfxlim2 43389 cncfshift 43415 cncfperiod 43420 ioodvbdlimc1lem1 43472 ioodvbdlimc1lem2 43473 ioodvbdlimc2lem 43475 fourierdlem68 43715 fourierdlem87 43734 fourierdlem103 43750 fourierdlem104 43751 etransclem48 43823 |
Copyright terms: Public domain | W3C validator |