![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexralbidv | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
Ref | Expression |
---|---|
2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexralbidv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | ralbidv 3184 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
3 | 2 | rexbidv 3185 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wral 3067 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-ral 3068 df-rex 3077 |
This theorem is referenced by: freq1 5667 rexfiuz 15396 cau3lem 15403 caubnd2 15406 climi 15556 rlimi 15559 o1lo1 15583 2clim 15618 lo1le 15700 caucvgrlem 15721 caurcvgr 15722 caucvgb 15728 vdwlem10 17037 vdwlem13 17040 pmatcollpw2lem 22804 neiptopnei 23161 lmcvg 23291 lmss 23327 elpt 23601 elptr 23602 txlm 23677 tsmsi 24163 ustuqtop4 24274 isucn 24308 isucn2 24309 ucnima 24311 metcnpi 24578 metcnpi2 24579 metucn 24605 xrge0tsms 24875 elcncf 24934 cncfi 24939 lmmcvg 25314 lhop1 26073 ulmval 26441 ulmi 26447 ulmcaulem 26455 ulmdvlem3 26463 pntibnd 27655 pntlem3 27671 pntleml 27673 axtgcont1 28494 perpln1 28736 perpln2 28737 isperp 28738 brbtwn 28932 uvtx01vtx 29432 isgrpo 30529 ubthlem3 30904 ubth 30905 hcau 31216 hcaucvg 31218 hlimi 31220 hlimconvi 31223 hlim2 31224 elcnop 31889 elcnfn 31914 cnopc 31945 cnfnc 31962 lnopcon 32067 lnfncon 32088 riesz1 32097 xrge0tsmsd 33041 signsply0 34528 unblimceq0 36473 cvgcau 45406 limcleqr 45565 addlimc 45569 0ellimcdiv 45570 climd 45593 climisp 45667 lmbr3 45668 climrescn 45669 climxrrelem 45670 climxrre 45671 xlimpnfxnegmnf 45735 xlimxrre 45752 xlimmnf 45762 xlimpnf 45763 xlimmnfmpt 45764 xlimpnfmpt 45765 dfxlim2 45769 cncfshift 45795 cncfperiod 45800 ioodvbdlimc1lem1 45852 ioodvbdlimc1lem2 45853 ioodvbdlimc2lem 45855 fourierdlem68 46095 fourierdlem87 46114 fourierdlem103 46130 fourierdlem104 46131 etransclem48 46203 |
Copyright terms: Public domain | W3C validator |