| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexralbidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexralbidv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | ralbidv 3152 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
| 3 | 2 | rexbidv 3153 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: freq1 5586 rexfiuz 15255 cau3lem 15262 caubnd2 15265 climi 15417 rlimi 15420 o1lo1 15444 2clim 15479 lo1le 15559 caucvgrlem 15580 caurcvgr 15581 caucvgb 15587 vdwlem10 16902 vdwlem13 16905 pmatcollpw2lem 22662 neiptopnei 23017 lmcvg 23147 lmss 23183 elpt 23457 elptr 23458 txlm 23533 tsmsi 24019 ustuqtop4 24130 isucn 24163 isucn2 24164 ucnima 24166 metcnpi 24430 metcnpi2 24431 metucn 24457 xrge0tsms 24721 elcncf 24780 cncfi 24785 lmmcvg 25159 lhop1 25917 ulmval 26287 ulmi 26293 ulmcaulem 26301 ulmdvlem3 26309 pntibnd 27502 pntlem3 27518 pntleml 27520 axtgcont1 28413 perpln1 28655 perpln2 28656 isperp 28657 brbtwn 28844 uvtx01vtx 29342 isgrpo 30441 ubthlem3 30816 ubth 30817 hcau 31128 hcaucvg 31130 hlimi 31132 hlimconvi 31135 hlim2 31136 elcnop 31801 elcnfn 31826 cnopc 31857 cnfnc 31874 lnopcon 31979 lnfncon 32000 riesz1 32009 xrge0tsmsd 33015 signsply0 34519 unblimceq0 36485 cvgcau 45473 limcleqr 45629 addlimc 45633 0ellimcdiv 45634 climd 45657 climisp 45731 lmbr3 45732 climrescn 45733 climxrrelem 45734 climxrre 45735 xlimpnfxnegmnf 45799 xlimxrre 45816 xlimmnf 45826 xlimpnf 45827 xlimmnfmpt 45828 xlimpnfmpt 45829 dfxlim2 45833 cncfshift 45859 cncfperiod 45864 ioodvbdlimc1lem1 45916 ioodvbdlimc1lem2 45917 ioodvbdlimc2lem 45919 fourierdlem68 46159 fourierdlem87 46178 fourierdlem103 46194 fourierdlem104 46195 etransclem48 46267 |
| Copyright terms: Public domain | W3C validator |