| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexralbidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexralbidv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | ralbidv 3156 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
| 3 | 2 | rexbidv 3157 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: freq1 5598 rexfiuz 15290 cau3lem 15297 caubnd2 15300 climi 15452 rlimi 15455 o1lo1 15479 2clim 15514 lo1le 15594 caucvgrlem 15615 caurcvgr 15616 caucvgb 15622 vdwlem10 16937 vdwlem13 16940 pmatcollpw2lem 22697 neiptopnei 23052 lmcvg 23182 lmss 23218 elpt 23492 elptr 23493 txlm 23568 tsmsi 24054 ustuqtop4 24165 isucn 24198 isucn2 24199 ucnima 24201 metcnpi 24465 metcnpi2 24466 metucn 24492 xrge0tsms 24756 elcncf 24815 cncfi 24820 lmmcvg 25194 lhop1 25952 ulmval 26322 ulmi 26328 ulmcaulem 26336 ulmdvlem3 26344 pntibnd 27537 pntlem3 27553 pntleml 27555 axtgcont1 28448 perpln1 28690 perpln2 28691 isperp 28692 brbtwn 28879 uvtx01vtx 29377 isgrpo 30476 ubthlem3 30851 ubth 30852 hcau 31163 hcaucvg 31165 hlimi 31167 hlimconvi 31170 hlim2 31171 elcnop 31836 elcnfn 31861 cnopc 31892 cnfnc 31909 lnopcon 32014 lnfncon 32035 riesz1 32044 xrge0tsmsd 33045 signsply0 34535 unblimceq0 36488 cvgcau 45479 limcleqr 45635 addlimc 45639 0ellimcdiv 45640 climd 45663 climisp 45737 lmbr3 45738 climrescn 45739 climxrrelem 45740 climxrre 45741 xlimpnfxnegmnf 45805 xlimxrre 45822 xlimmnf 45832 xlimpnf 45833 xlimmnfmpt 45834 xlimpnfmpt 45835 dfxlim2 45839 cncfshift 45865 cncfperiod 45870 ioodvbdlimc1lem1 45922 ioodvbdlimc1lem2 45923 ioodvbdlimc2lem 45925 fourierdlem68 46165 fourierdlem87 46184 fourierdlem103 46200 fourierdlem104 46201 etransclem48 46273 |
| Copyright terms: Public domain | W3C validator |