| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexralbidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexralbidv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | ralbidv 3155 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
| 3 | 2 | rexbidv 3156 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wral 3047 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-ral 3048 df-rex 3057 |
| This theorem is referenced by: freq1 5581 rexfiuz 15255 cau3lem 15262 caubnd2 15265 climi 15417 rlimi 15420 o1lo1 15444 2clim 15479 lo1le 15559 caucvgrlem 15580 caurcvgr 15581 caucvgb 15587 vdwlem10 16902 vdwlem13 16905 pmatcollpw2lem 22692 neiptopnei 23047 lmcvg 23177 lmss 23213 elpt 23487 elptr 23488 txlm 23563 tsmsi 24049 ustuqtop4 24159 isucn 24192 isucn2 24193 ucnima 24195 metcnpi 24459 metcnpi2 24460 metucn 24486 xrge0tsms 24750 elcncf 24809 cncfi 24814 lmmcvg 25188 lhop1 25946 ulmval 26316 ulmi 26322 ulmcaulem 26330 ulmdvlem3 26338 pntibnd 27531 pntlem3 27547 pntleml 27549 axtgcont1 28446 perpln1 28688 perpln2 28689 isperp 28690 brbtwn 28877 uvtx01vtx 29375 isgrpo 30477 ubthlem3 30852 ubth 30853 hcau 31164 hcaucvg 31166 hlimi 31168 hlimconvi 31171 hlim2 31172 elcnop 31837 elcnfn 31862 cnopc 31893 cnfnc 31910 lnopcon 32015 lnfncon 32036 riesz1 32045 xrge0tsmsd 33042 signsply0 34564 unblimceq0 36551 cvgcau 45598 limcleqr 45752 addlimc 45756 0ellimcdiv 45757 climd 45780 climisp 45854 lmbr3 45855 climrescn 45856 climxrrelem 45857 climxrre 45858 xlimpnfxnegmnf 45922 xlimxrre 45939 xlimmnf 45949 xlimpnf 45950 xlimmnfmpt 45951 xlimpnfmpt 45952 dfxlim2 45956 cncfshift 45982 cncfperiod 45987 ioodvbdlimc1lem1 46039 ioodvbdlimc1lem2 46040 ioodvbdlimc2lem 46042 fourierdlem68 46282 fourierdlem87 46301 fourierdlem103 46317 fourierdlem104 46318 etransclem48 46390 |
| Copyright terms: Public domain | W3C validator |