| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexralbidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexralbidv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | ralbidv 3156 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
| 3 | 2 | rexbidv 3157 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: freq1 5605 rexfiuz 15314 cau3lem 15321 caubnd2 15324 climi 15476 rlimi 15479 o1lo1 15503 2clim 15538 lo1le 15618 caucvgrlem 15639 caurcvgr 15640 caucvgb 15646 vdwlem10 16961 vdwlem13 16964 pmatcollpw2lem 22664 neiptopnei 23019 lmcvg 23149 lmss 23185 elpt 23459 elptr 23460 txlm 23535 tsmsi 24021 ustuqtop4 24132 isucn 24165 isucn2 24166 ucnima 24168 metcnpi 24432 metcnpi2 24433 metucn 24459 xrge0tsms 24723 elcncf 24782 cncfi 24787 lmmcvg 25161 lhop1 25919 ulmval 26289 ulmi 26295 ulmcaulem 26303 ulmdvlem3 26311 pntibnd 27504 pntlem3 27520 pntleml 27522 axtgcont1 28395 perpln1 28637 perpln2 28638 isperp 28639 brbtwn 28826 uvtx01vtx 29324 isgrpo 30426 ubthlem3 30801 ubth 30802 hcau 31113 hcaucvg 31115 hlimi 31117 hlimconvi 31120 hlim2 31121 elcnop 31786 elcnfn 31811 cnopc 31842 cnfnc 31859 lnopcon 31964 lnfncon 31985 riesz1 31994 xrge0tsmsd 33002 signsply0 34542 unblimceq0 36495 cvgcau 45486 limcleqr 45642 addlimc 45646 0ellimcdiv 45647 climd 45670 climisp 45744 lmbr3 45745 climrescn 45746 climxrrelem 45747 climxrre 45748 xlimpnfxnegmnf 45812 xlimxrre 45829 xlimmnf 45839 xlimpnf 45840 xlimmnfmpt 45841 xlimpnfmpt 45842 dfxlim2 45846 cncfshift 45872 cncfperiod 45877 ioodvbdlimc1lem1 45929 ioodvbdlimc1lem2 45930 ioodvbdlimc2lem 45932 fourierdlem68 46172 fourierdlem87 46191 fourierdlem103 46207 fourierdlem104 46208 etransclem48 46280 |
| Copyright terms: Public domain | W3C validator |