Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexralbidv | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
Ref | Expression |
---|---|
2rexbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexralbidv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2rexbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | ralbidv 3127 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
3 | 2 | rexbidv 3222 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∀wral 3071 ∃wrex 3072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 |
This theorem depends on definitions: df-bi 210 df-an 401 df-ex 1783 df-ral 3076 df-rex 3077 |
This theorem is referenced by: freq1 5495 rexfiuz 14756 cau3lem 14763 caubnd2 14766 climi 14916 rlimi 14919 o1lo1 14943 2clim 14978 lo1le 15057 caucvgrlem 15078 caurcvgr 15079 caucvgb 15085 vdwlem10 16382 vdwlem13 16385 pmatcollpw2lem 21478 neiptopnei 21833 lmcvg 21963 lmss 21999 elpt 22273 elptr 22274 txlm 22349 tsmsi 22835 ustuqtop4 22946 isucn 22980 isucn2 22981 ucnima 22983 metcnpi 23247 metcnpi2 23248 metucn 23274 xrge0tsms 23536 elcncf 23591 cncfi 23596 lmmcvg 23962 lhop1 24714 ulmval 25075 ulmi 25081 ulmcaulem 25089 ulmdvlem3 25097 pntibnd 26277 pntlem3 26293 pntleml 26295 axtgcont1 26362 perpln1 26604 perpln2 26605 isperp 26606 brbtwn 26793 uvtx01vtx 27287 isgrpo 28380 ubthlem3 28755 ubth 28756 hcau 29067 hcaucvg 29069 hlimi 29071 hlimconvi 29074 hlim2 29075 elcnop 29740 elcnfn 29765 cnopc 29796 cnfnc 29813 lnopcon 29918 lnfncon 29939 riesz1 29948 xrge0tsmsd 30844 signsply0 32050 unblimceq0 34237 limcleqr 42653 addlimc 42657 0ellimcdiv 42658 climd 42681 climisp 42755 lmbr3 42756 climrescn 42757 climxrrelem 42758 climxrre 42759 xlimpnfxnegmnf 42823 xlimxrre 42840 xlimmnf 42850 xlimpnf 42851 xlimmnfmpt 42852 xlimpnfmpt 42853 dfxlim2 42857 cncfshift 42883 cncfperiod 42888 ioodvbdlimc1lem1 42940 ioodvbdlimc1lem2 42941 ioodvbdlimc2lem 42943 fourierdlem68 43183 fourierdlem87 43202 fourierdlem103 43218 fourierdlem104 43219 etransclem48 43291 |
Copyright terms: Public domain | W3C validator |