| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexralbidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexralbidv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | ralbidv 3157 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
| 3 | 2 | rexbidv 3158 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wral 3045 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3046 df-rex 3055 |
| This theorem is referenced by: freq1 5608 rexfiuz 15321 cau3lem 15328 caubnd2 15331 climi 15483 rlimi 15486 o1lo1 15510 2clim 15545 lo1le 15625 caucvgrlem 15646 caurcvgr 15647 caucvgb 15653 vdwlem10 16968 vdwlem13 16971 pmatcollpw2lem 22671 neiptopnei 23026 lmcvg 23156 lmss 23192 elpt 23466 elptr 23467 txlm 23542 tsmsi 24028 ustuqtop4 24139 isucn 24172 isucn2 24173 ucnima 24175 metcnpi 24439 metcnpi2 24440 metucn 24466 xrge0tsms 24730 elcncf 24789 cncfi 24794 lmmcvg 25168 lhop1 25926 ulmval 26296 ulmi 26302 ulmcaulem 26310 ulmdvlem3 26318 pntibnd 27511 pntlem3 27527 pntleml 27529 axtgcont1 28402 perpln1 28644 perpln2 28645 isperp 28646 brbtwn 28833 uvtx01vtx 29331 isgrpo 30433 ubthlem3 30808 ubth 30809 hcau 31120 hcaucvg 31122 hlimi 31124 hlimconvi 31127 hlim2 31128 elcnop 31793 elcnfn 31818 cnopc 31849 cnfnc 31866 lnopcon 31971 lnfncon 31992 riesz1 32001 xrge0tsmsd 33009 signsply0 34549 unblimceq0 36502 cvgcau 45493 limcleqr 45649 addlimc 45653 0ellimcdiv 45654 climd 45677 climisp 45751 lmbr3 45752 climrescn 45753 climxrrelem 45754 climxrre 45755 xlimpnfxnegmnf 45819 xlimxrre 45836 xlimmnf 45846 xlimpnf 45847 xlimmnfmpt 45848 xlimpnfmpt 45849 dfxlim2 45853 cncfshift 45879 cncfperiod 45884 ioodvbdlimc1lem1 45936 ioodvbdlimc1lem2 45937 ioodvbdlimc2lem 45939 fourierdlem68 46179 fourierdlem87 46198 fourierdlem103 46214 fourierdlem104 46215 etransclem48 46287 |
| Copyright terms: Public domain | W3C validator |