| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexralbidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexralbidv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | ralbidv 3163 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
| 3 | 2 | rexbidv 3164 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wral 3051 ∃wrex 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3052 df-rex 3061 |
| This theorem is referenced by: freq1 5621 rexfiuz 15366 cau3lem 15373 caubnd2 15376 climi 15526 rlimi 15529 o1lo1 15553 2clim 15588 lo1le 15668 caucvgrlem 15689 caurcvgr 15690 caucvgb 15696 vdwlem10 17010 vdwlem13 17013 pmatcollpw2lem 22715 neiptopnei 23070 lmcvg 23200 lmss 23236 elpt 23510 elptr 23511 txlm 23586 tsmsi 24072 ustuqtop4 24183 isucn 24216 isucn2 24217 ucnima 24219 metcnpi 24483 metcnpi2 24484 metucn 24510 xrge0tsms 24774 elcncf 24833 cncfi 24838 lmmcvg 25213 lhop1 25971 ulmval 26341 ulmi 26347 ulmcaulem 26355 ulmdvlem3 26363 pntibnd 27556 pntlem3 27572 pntleml 27574 axtgcont1 28447 perpln1 28689 perpln2 28690 isperp 28691 brbtwn 28878 uvtx01vtx 29376 isgrpo 30478 ubthlem3 30853 ubth 30854 hcau 31165 hcaucvg 31167 hlimi 31169 hlimconvi 31172 hlim2 31173 elcnop 31838 elcnfn 31863 cnopc 31894 cnfnc 31911 lnopcon 32016 lnfncon 32037 riesz1 32046 xrge0tsmsd 33056 signsply0 34583 unblimceq0 36525 cvgcau 45517 limcleqr 45673 addlimc 45677 0ellimcdiv 45678 climd 45701 climisp 45775 lmbr3 45776 climrescn 45777 climxrrelem 45778 climxrre 45779 xlimpnfxnegmnf 45843 xlimxrre 45860 xlimmnf 45870 xlimpnf 45871 xlimmnfmpt 45872 xlimpnfmpt 45873 dfxlim2 45877 cncfshift 45903 cncfperiod 45908 ioodvbdlimc1lem1 45960 ioodvbdlimc1lem2 45961 ioodvbdlimc2lem 45963 fourierdlem68 46203 fourierdlem87 46222 fourierdlem103 46238 fourierdlem104 46239 etransclem48 46311 |
| Copyright terms: Public domain | W3C validator |