Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2ralbii | Structured version Visualization version GIF version |
Description: Inference adding two restricted universal quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.) |
Ref | Expression |
---|---|
2ralbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2ralbii | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | ralbii 3094 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓) |
3 | 2 | ralbii 3094 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 |
This theorem depends on definitions: df-bi 206 df-ral 3063 |
This theorem is referenced by: ralnex3 3129 rmo4f 3688 2reu4lem 4478 cnvso 6233 fununi 6568 dff14a 7208 isocnv2 7267 f1opr 7402 sorpss 7652 tpossym 8153 dford2 9486 isffth2 17734 ispos2 18135 issubm 18544 cntzrec 19041 oppgsubm 19070 opprirred 20043 opprsubrg 20154 gsummatr01lem3 21916 gsummatr01 21918 isbasis2g 22208 ist0-3 22606 isfbas2 23096 isclmp 24370 dfadj2 30601 adjval2 30607 cnlnadjeui 30793 adjbdln 30799 isarchi 31787 prmidl0 31987 dff15 33419 iccllysconn 33575 dfso3 34024 elpotr 34104 dfon2 34115 xpord3ind 34146 addsproplem4 34238 addsproplem6 34240 addsprop 34242 3ralbii 36564 idinxpss 36629 inxpssidinxp 36633 idinxpssinxp 36634 dfeldisj5 37039 isltrn2N 38439 isdomn5 40479 fphpd 40951 isdomn3 41343 fiinfi 41554 ntrk1k3eqk13 42033 ordelordALT 42530 disjinfi 43110 issubmgm 45761 isthinc2 46720 isthinc3 46721 |
Copyright terms: Public domain | W3C validator |