| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ralbii | Structured version Visualization version GIF version | ||
| Description: Inference adding two restricted universal quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.) |
| Ref | Expression |
|---|---|
| 2ralbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 2ralbii | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | ralbii 3075 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓) |
| 3 | 2 | ralbii 3075 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ral 3045 |
| This theorem is referenced by: 3ralbii 3110 ralnex3 3114 rmo4f 3706 2reu4lem 4485 cnvso 6261 fununi 6591 dff14a 7245 isocnv2 7306 f1opr 7445 sorpss 7704 xpord3inddlem 8133 tpossym 8237 dford2 9573 isffth2 17880 ispos2 18276 issubmgm 18629 issubm 18730 cntzrec 19268 oppgsubm 19294 opprirred 20331 opprsubrng 20468 rhmimasubrng 20475 cntzsubrng 20476 opprsubrg 20502 isdomn5 20619 isdomn3 20624 gsummatr01lem3 22544 gsummatr01 22546 isbasis2g 22835 ist0-3 23232 isfbas2 23722 isclmp 24997 addsproplem4 27879 addsproplem6 27881 addsprop 27883 negsproplem4 27937 negsproplem6 27939 negsprop 27941 mulsprop 28033 dfadj2 31814 adjval2 31820 cnlnadjeui 32006 adjbdln 32012 isarchi 33136 prmidl0 33421 ply1dg3rt0irred 33551 dff15 35074 iccllysconn 35237 dfso3 35707 elpotr 35769 dfon2 35780 idinxpss 38300 inxpssidinxp 38304 idinxpssinxp 38305 dfeldisj5 38713 isltrn2N 40114 hashnexinj 42116 fphpd 42804 fiinfi 43562 ntrk1k3eqk13 44039 ordelordALT 44527 dfac5prim 44980 disjinfi 45186 isthinc2 49409 isthinc3 49410 |
| Copyright terms: Public domain | W3C validator |