| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ralbii | Structured version Visualization version GIF version | ||
| Description: Inference adding two restricted universal quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.) |
| Ref | Expression |
|---|---|
| 2ralbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 2ralbii | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | ralbii 3082 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓) |
| 3 | 2 | ralbii 3082 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wral 3051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ral 3052 |
| This theorem is referenced by: 3ralbii 3117 ralnex3 3121 rmo4f 3718 2reu4lem 4497 cnvso 6277 fununi 6610 dff14a 7262 isocnv2 7323 f1opr 7461 sorpss 7720 xpord3inddlem 8151 tpossym 8255 dford2 9632 isffth2 17929 ispos2 18325 issubmgm 18678 issubm 18779 cntzrec 19317 oppgsubm 19343 opprirred 20380 opprsubrng 20517 rhmimasubrng 20524 cntzsubrng 20525 opprsubrg 20551 isdomn5 20668 isdomn3 20673 gsummatr01lem3 22593 gsummatr01 22595 isbasis2g 22884 ist0-3 23281 isfbas2 23771 isclmp 25046 addsproplem4 27922 addsproplem6 27924 addsprop 27926 negsproplem4 27980 negsproplem6 27982 negsprop 27984 mulsprop 28073 dfadj2 31812 adjval2 31818 cnlnadjeui 32004 adjbdln 32010 isarchi 33126 prmidl0 33411 ply1dg3rt0irred 33541 dff15 35061 iccllysconn 35218 dfso3 35683 elpotr 35745 dfon2 35756 idinxpss 38276 inxpssidinxp 38280 idinxpssinxp 38281 dfeldisj5 38685 isltrn2N 40085 hashnexinj 42087 fphpd 42786 fiinfi 43544 ntrk1k3eqk13 44021 ordelordALT 44510 dfac5prim 44963 disjinfi 45164 isthinc2 49254 isthinc3 49255 |
| Copyright terms: Public domain | W3C validator |