![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ralbii | Structured version Visualization version GIF version |
Description: Inference adding two restricted universal quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.) |
Ref | Expression |
---|---|
ralbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2ralbii | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | ralbii 3134 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓) |
3 | 2 | ralbii 3134 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 ∀wral 3107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 |
This theorem depends on definitions: df-bi 208 df-ral 3112 |
This theorem is referenced by: ralnex3 3228 rmo4f 3665 2reu4lem 4385 cnvso 6021 fununi 6306 dff14a 6900 isocnv2 6954 f1opr 7076 sorpss 7319 tpossym 7782 dford2 8936 isffth2 17019 ispos2 17391 issubm 17790 cntzrec 18209 oppgsubm 18235 opprirred 19146 opprsubrg 19250 gsummatr01lem3 20954 gsummatr01 20956 isbasis2g 21244 ist0-3 21641 isfbas2 22131 isclmp 23388 dfadj2 29349 adjval2 29355 cnlnadjeui 29541 adjbdln 29547 isarchi 30445 dff15 31963 iccllysconn 32107 dfso3 32560 elpotr 32636 dfon2 32647 3ralbii 35063 idinxpss 35123 inxpssidinxp 35126 idinxpssinxp 35127 dfeldisj5 35506 isltrn2N 36808 fphpd 38919 isdomn3 39310 fiinfi 39438 ntrk1k3eqk13 39906 ordelordALT 40431 issubmgm 43560 |
Copyright terms: Public domain | W3C validator |