MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ralbii Structured version   Visualization version   GIF version

Theorem 2ralbii 3135
Description: Inference adding two restricted universal quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.)
Hypothesis
Ref Expression
ralbii.1 (𝜑𝜓)
Assertion
Ref Expression
2ralbii (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝐴𝑦𝐵 𝜓)

Proof of Theorem 2ralbii
StepHypRef Expression
1 ralbii.1 . . 3 (𝜑𝜓)
21ralbii 3134 . 2 (∀𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 𝜓)
32ralbii 3134 1 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝐴𝑦𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 207  wral 3107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795
This theorem depends on definitions:  df-bi 208  df-ral 3112
This theorem is referenced by:  ralnex3  3228  rmo4f  3665  2reu4lem  4385  cnvso  6021  fununi  6306  dff14a  6900  isocnv2  6954  f1opr  7076  sorpss  7319  tpossym  7782  dford2  8936  isffth2  17019  ispos2  17391  issubm  17790  cntzrec  18209  oppgsubm  18235  opprirred  19146  opprsubrg  19250  gsummatr01lem3  20954  gsummatr01  20956  isbasis2g  21244  ist0-3  21641  isfbas2  22131  isclmp  23388  dfadj2  29349  adjval2  29355  cnlnadjeui  29541  adjbdln  29547  isarchi  30445  dff15  31963  iccllysconn  32107  dfso3  32560  elpotr  32636  dfon2  32647  3ralbii  35063  idinxpss  35123  inxpssidinxp  35126  idinxpssinxp  35127  dfeldisj5  35506  isltrn2N  36808  fphpd  38919  isdomn3  39310  fiinfi  39438  ntrk1k3eqk13  39906  ordelordALT  40431  issubmgm  43560
  Copyright terms: Public domain W3C validator