| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ralbii | Structured version Visualization version GIF version | ||
| Description: Inference adding two restricted universal quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.) |
| Ref | Expression |
|---|---|
| 2ralbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 2ralbii | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | ralbii 3076 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓) |
| 3 | 2 | ralbii 3076 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wral 3045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ral 3046 |
| This theorem is referenced by: 3ralbii 3111 ralnex3 3115 rmo4f 3709 2reu4lem 4488 cnvso 6264 fununi 6594 dff14a 7248 isocnv2 7309 f1opr 7448 sorpss 7707 xpord3inddlem 8136 tpossym 8240 dford2 9580 isffth2 17887 ispos2 18283 issubmgm 18636 issubm 18737 cntzrec 19275 oppgsubm 19301 opprirred 20338 opprsubrng 20475 rhmimasubrng 20482 cntzsubrng 20483 opprsubrg 20509 isdomn5 20626 isdomn3 20631 gsummatr01lem3 22551 gsummatr01 22553 isbasis2g 22842 ist0-3 23239 isfbas2 23729 isclmp 25004 addsproplem4 27886 addsproplem6 27888 addsprop 27890 negsproplem4 27944 negsproplem6 27946 negsprop 27948 mulsprop 28040 dfadj2 31821 adjval2 31827 cnlnadjeui 32013 adjbdln 32019 isarchi 33143 prmidl0 33428 ply1dg3rt0irred 33558 dff15 35081 iccllysconn 35244 dfso3 35714 elpotr 35776 dfon2 35787 idinxpss 38307 inxpssidinxp 38311 idinxpssinxp 38312 dfeldisj5 38720 isltrn2N 40121 hashnexinj 42123 fphpd 42811 fiinfi 43569 ntrk1k3eqk13 44046 ordelordALT 44534 dfac5prim 44987 disjinfi 45193 isthinc2 49413 isthinc3 49414 |
| Copyright terms: Public domain | W3C validator |