Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2ralbii | Structured version Visualization version GIF version |
Description: Inference adding two restricted universal quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.) |
Ref | Expression |
---|---|
ralbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2ralbii | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | ralbii 3093 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓) |
3 | 2 | ralbii 3093 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wral 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-ral 3070 |
This theorem is referenced by: ralnex3 3191 rmo4f 3671 2reu4lem 4457 cnvso 6195 fununi 6516 dff14a 7152 isocnv2 7211 f1opr 7340 sorpss 7590 tpossym 8083 dford2 9387 isffth2 17641 ispos2 18042 issubm 18451 cntzrec 18949 oppgsubm 18978 opprirred 19953 opprsubrg 20054 gsummatr01lem3 21815 gsummatr01 21817 isbasis2g 22107 ist0-3 22505 isfbas2 22995 isclmp 24269 dfadj2 30256 adjval2 30262 cnlnadjeui 30448 adjbdln 30454 isarchi 31445 prmidl0 31635 dff15 33065 iccllysconn 33221 dfso3 33673 elpotr 33766 dfon2 33777 xpord3ind 33809 3ralbii 36396 idinxpss 36455 inxpssidinxp 36458 idinxpssinxp 36459 dfeldisj5 36839 isltrn2N 38141 isdomn5 40178 fphpd 40645 isdomn3 41036 fiinfi 41187 ntrk1k3eqk13 41667 ordelordALT 42164 disjinfi 42738 issubmgm 45354 isthinc2 46314 isthinc3 46315 |
Copyright terms: Public domain | W3C validator |