| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ralbii | Structured version Visualization version GIF version | ||
| Description: Inference adding two restricted universal quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.) |
| Ref | Expression |
|---|---|
| 2ralbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 2ralbii | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | ralbii 3078 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓) |
| 3 | 2 | ralbii 3078 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ral 3048 |
| This theorem is referenced by: 3ralbii 3109 ralnex3 3113 rmo4f 3689 2reu4lem 4469 cnvso 6235 fununi 6556 dff14a 7204 isocnv2 7265 f1opr 7402 sorpss 7661 xpord3inddlem 8084 tpossym 8188 dford2 9510 isffth2 17825 ispos2 18221 issubmgm 18610 issubm 18711 cntzrec 19248 oppgsubm 19274 opprirred 20340 opprsubrng 20474 rhmimasubrng 20481 cntzsubrng 20482 opprsubrg 20508 isdomn5 20625 isdomn3 20630 gsummatr01lem3 22572 gsummatr01 22574 isbasis2g 22863 ist0-3 23260 isfbas2 23750 isclmp 25024 addsproplem4 27915 addsproplem6 27917 addsprop 27919 negsproplem4 27973 negsproplem6 27975 negsprop 27977 mulsprop 28069 dfadj2 31865 adjval2 31871 cnlnadjeui 32057 adjbdln 32063 isarchi 33151 prmidl0 33415 ply1dg3rt0irred 33546 dff15 35096 iccllysconn 35294 dfso3 35764 elpotr 35823 dfon2 35834 idinxpss 38354 inxpssidinxp 38358 idinxpssinxp 38359 dfeldisj5 38767 isltrn2N 40167 hashnexinj 42169 fphpd 42857 fiinfi 43614 ntrk1k3eqk13 44091 ordelordALT 44578 dfac5prim 45031 disjinfi 45237 isthinc2 49460 isthinc3 49461 |
| Copyright terms: Public domain | W3C validator |