![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ralbii | Structured version Visualization version GIF version |
Description: Inference adding two restricted universal quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.) |
Ref | Expression |
---|---|
2ralbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2ralbii | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | ralbii 3099 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓) |
3 | 2 | ralbii 3099 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-ral 3068 |
This theorem is referenced by: 3ralbii 3136 ralnex3 3140 rmo4f 3757 2reu4lem 4545 cnvso 6319 fununi 6653 dff14a 7307 isocnv2 7367 f1opr 7506 sorpss 7763 xpord3inddlem 8195 tpossym 8299 dford2 9689 isffth2 17983 ispos2 18385 issubmgm 18740 issubm 18838 cntzrec 19376 oppgsubm 19405 opprirred 20448 opprsubrng 20585 rhmimasubrng 20592 cntzsubrng 20593 opprsubrg 20621 isdomn5 20732 isdomn3 20737 gsummatr01lem3 22684 gsummatr01 22686 isbasis2g 22976 ist0-3 23374 isfbas2 23864 isclmp 25149 addsproplem4 28023 addsproplem6 28025 addsprop 28027 negsproplem4 28081 negsproplem6 28083 negsprop 28085 mulsprop 28174 dfadj2 31917 adjval2 31923 cnlnadjeui 32109 adjbdln 32115 isarchi 33162 prmidl0 33443 ply1dg3rt0irred 33572 dff15 35060 iccllysconn 35218 dfso3 35682 elpotr 35745 dfon2 35756 idinxpss 38268 inxpssidinxp 38272 idinxpssinxp 38273 dfeldisj5 38677 isltrn2N 40077 hashnexinj 42085 fphpd 42772 fiinfi 43535 ntrk1k3eqk13 44012 ordelordALT 44508 disjinfi 45099 isthinc2 48689 isthinc3 48690 |
Copyright terms: Public domain | W3C validator |