| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ralbii | Structured version Visualization version GIF version | ||
| Description: Inference adding two restricted universal quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.) |
| Ref | Expression |
|---|---|
| 2ralbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 2ralbii | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | ralbii 3075 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓) |
| 3 | 2 | ralbii 3075 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ral 3045 |
| This theorem is referenced by: 3ralbii 3106 ralnex3 3110 rmo4f 3695 2reu4lem 4473 cnvso 6236 fununi 6557 dff14a 7207 isocnv2 7268 f1opr 7405 sorpss 7664 xpord3inddlem 8087 tpossym 8191 dford2 9516 isffth2 17825 ispos2 18221 issubmgm 18576 issubm 18677 cntzrec 19215 oppgsubm 19241 opprirred 20307 opprsubrng 20444 rhmimasubrng 20451 cntzsubrng 20452 opprsubrg 20478 isdomn5 20595 isdomn3 20600 gsummatr01lem3 22542 gsummatr01 22544 isbasis2g 22833 ist0-3 23230 isfbas2 23720 isclmp 24995 addsproplem4 27884 addsproplem6 27886 addsprop 27888 negsproplem4 27942 negsproplem6 27944 negsprop 27946 mulsprop 28038 dfadj2 31829 adjval2 31835 cnlnadjeui 32021 adjbdln 32027 isarchi 33124 prmidl0 33387 ply1dg3rt0irred 33518 dff15 35051 iccllysconn 35223 dfso3 35693 elpotr 35755 dfon2 35766 idinxpss 38286 inxpssidinxp 38290 idinxpssinxp 38291 dfeldisj5 38699 isltrn2N 40099 hashnexinj 42101 fphpd 42789 fiinfi 43546 ntrk1k3eqk13 44023 ordelordALT 44511 dfac5prim 44964 disjinfi 45170 isthinc2 49405 isthinc3 49406 |
| Copyright terms: Public domain | W3C validator |