![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ralbii | Structured version Visualization version GIF version |
Description: Inference adding two restricted universal quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.) |
Ref | Expression |
---|---|
2ralbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2ralbii | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | ralbii 3090 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓) |
3 | 2 | ralbii 3090 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∀wral 3058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 |
This theorem depends on definitions: df-bi 207 df-ral 3059 |
This theorem is referenced by: 3ralbii 3127 ralnex3 3131 rmo4f 3743 2reu4lem 4527 cnvso 6309 fununi 6642 dff14a 7289 isocnv2 7350 f1opr 7488 sorpss 7746 xpord3inddlem 8177 tpossym 8281 dford2 9657 isffth2 17969 ispos2 18372 issubmgm 18727 issubm 18828 cntzrec 19366 oppgsubm 19395 opprirred 20438 opprsubrng 20575 rhmimasubrng 20582 cntzsubrng 20583 opprsubrg 20609 isdomn5 20726 isdomn3 20731 gsummatr01lem3 22678 gsummatr01 22680 isbasis2g 22970 ist0-3 23368 isfbas2 23858 isclmp 25143 addsproplem4 28019 addsproplem6 28021 addsprop 28023 negsproplem4 28077 negsproplem6 28079 negsprop 28081 mulsprop 28170 dfadj2 31913 adjval2 31919 cnlnadjeui 32105 adjbdln 32111 isarchi 33171 prmidl0 33457 ply1dg3rt0irred 33586 dff15 35076 iccllysconn 35234 dfso3 35699 elpotr 35762 dfon2 35773 idinxpss 38293 inxpssidinxp 38297 idinxpssinxp 38298 dfeldisj5 38702 isltrn2N 40102 hashnexinj 42109 fphpd 42803 fiinfi 43562 ntrk1k3eqk13 44039 ordelordALT 44534 disjinfi 45134 isthinc2 48821 isthinc3 48822 |
Copyright terms: Public domain | W3C validator |