Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2ralbii | Structured version Visualization version GIF version |
Description: Inference adding two restricted universal quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.) |
Ref | Expression |
---|---|
ralbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2ralbii | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | ralbii 3090 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓) |
3 | 2 | ralbii 3090 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-ral 3068 |
This theorem is referenced by: ralnex3 3189 rmo4f 3665 2reu4lem 4453 cnvso 6180 fununi 6493 dff14a 7124 isocnv2 7182 f1opr 7309 sorpss 7559 tpossym 8045 dford2 9308 isffth2 17548 ispos2 17948 issubm 18357 cntzrec 18855 oppgsubm 18884 opprirred 19859 opprsubrg 19960 gsummatr01lem3 21714 gsummatr01 21716 isbasis2g 22006 ist0-3 22404 isfbas2 22894 isclmp 24166 dfadj2 30148 adjval2 30154 cnlnadjeui 30340 adjbdln 30346 isarchi 31338 prmidl0 31528 dff15 32956 iccllysconn 33112 dfso3 33566 elpotr 33663 dfon2 33674 xpord3ind 33727 3ralbii 36315 idinxpss 36375 inxpssidinxp 36378 idinxpssinxp 36379 dfeldisj5 36759 isltrn2N 38061 isdomn5 40099 fphpd 40554 isdomn3 40945 fiinfi 41069 ntrk1k3eqk13 41549 ordelordALT 42046 disjinfi 42620 issubmgm 45231 isthinc2 46191 isthinc3 46192 |
Copyright terms: Public domain | W3C validator |