| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ralbii | Structured version Visualization version GIF version | ||
| Description: Inference adding two restricted universal quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.) |
| Ref | Expression |
|---|---|
| 2ralbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 2ralbii | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | ralbii 3075 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓) |
| 3 | 2 | ralbii 3075 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ral 3045 |
| This theorem is referenced by: 3ralbii 3110 ralnex3 3114 rmo4f 3703 2reu4lem 4481 cnvso 6249 fununi 6575 dff14a 7227 isocnv2 7288 f1opr 7425 sorpss 7684 xpord3inddlem 8110 tpossym 8214 dford2 9549 isffth2 17856 ispos2 18252 issubmgm 18605 issubm 18706 cntzrec 19244 oppgsubm 19270 opprirred 20307 opprsubrng 20444 rhmimasubrng 20451 cntzsubrng 20452 opprsubrg 20478 isdomn5 20595 isdomn3 20600 gsummatr01lem3 22520 gsummatr01 22522 isbasis2g 22811 ist0-3 23208 isfbas2 23698 isclmp 24973 addsproplem4 27855 addsproplem6 27857 addsprop 27859 negsproplem4 27913 negsproplem6 27915 negsprop 27917 mulsprop 28009 dfadj2 31787 adjval2 31793 cnlnadjeui 31979 adjbdln 31985 isarchi 33109 prmidl0 33394 ply1dg3rt0irred 33524 dff15 35047 iccllysconn 35210 dfso3 35680 elpotr 35742 dfon2 35753 idinxpss 38273 inxpssidinxp 38277 idinxpssinxp 38278 dfeldisj5 38686 isltrn2N 40087 hashnexinj 42089 fphpd 42777 fiinfi 43535 ntrk1k3eqk13 44012 ordelordALT 44500 dfac5prim 44953 disjinfi 45159 isthinc2 49382 isthinc3 49383 |
| Copyright terms: Public domain | W3C validator |