![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvral4vw | Structured version Visualization version GIF version |
Description: Change bound variables of quadruple restricted universal quantification, using implicit substitution. (Contributed by Scott Fenton, 2-Mar-2025.) |
Ref | Expression |
---|---|
cbvral4vw.1 | ⊢ (𝑥 = 𝑎 → (𝜑 ↔ 𝜒)) |
cbvral4vw.2 | ⊢ (𝑦 = 𝑏 → (𝜒 ↔ 𝜃)) |
cbvral4vw.3 | ⊢ (𝑧 = 𝑐 → (𝜃 ↔ 𝜏)) |
cbvral4vw.4 | ⊢ (𝑤 = 𝑑 → (𝜏 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvral4vw | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 𝜑 ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐶 ∀𝑑 ∈ 𝐷 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvral4vw.1 | . . . 4 ⊢ (𝑥 = 𝑎 → (𝜑 ↔ 𝜒)) | |
2 | 1 | ralbidv 3169 | . . 3 ⊢ (𝑥 = 𝑎 → (∀𝑤 ∈ 𝐷 𝜑 ↔ ∀𝑤 ∈ 𝐷 𝜒)) |
3 | cbvral4vw.2 | . . . 4 ⊢ (𝑦 = 𝑏 → (𝜒 ↔ 𝜃)) | |
4 | 3 | ralbidv 3169 | . . 3 ⊢ (𝑦 = 𝑏 → (∀𝑤 ∈ 𝐷 𝜒 ↔ ∀𝑤 ∈ 𝐷 𝜃)) |
5 | cbvral4vw.3 | . . . 4 ⊢ (𝑧 = 𝑐 → (𝜃 ↔ 𝜏)) | |
6 | 5 | ralbidv 3169 | . . 3 ⊢ (𝑧 = 𝑐 → (∀𝑤 ∈ 𝐷 𝜃 ↔ ∀𝑤 ∈ 𝐷 𝜏)) |
7 | 2, 4, 6 | cbvral3vw 3232 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 𝜑 ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐶 ∀𝑤 ∈ 𝐷 𝜏) |
8 | cbvral4vw.4 | . . . 4 ⊢ (𝑤 = 𝑑 → (𝜏 ↔ 𝜓)) | |
9 | 8 | cbvralvw 3226 | . . 3 ⊢ (∀𝑤 ∈ 𝐷 𝜏 ↔ ∀𝑑 ∈ 𝐷 𝜓) |
10 | 9 | 3ralbii 3122 | . 2 ⊢ (∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐶 ∀𝑤 ∈ 𝐷 𝜏 ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐶 ∀𝑑 ∈ 𝐷 𝜓) |
11 | 7, 10 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 𝜑 ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐶 ∀𝑑 ∈ 𝐷 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wral 3053 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1774 df-clel 2802 df-ral 3054 |
This theorem is referenced by: cbvral6vw 3234 cbvral8vw 3235 |
Copyright terms: Public domain | W3C validator |