|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cbvral4vw | Structured version Visualization version GIF version | ||
| Description: Change bound variables of quadruple restricted universal quantification, using implicit substitution. (Contributed by Scott Fenton, 2-Mar-2025.) | 
| Ref | Expression | 
|---|---|
| cbvral4vw.1 | ⊢ (𝑥 = 𝑎 → (𝜑 ↔ 𝜒)) | 
| cbvral4vw.2 | ⊢ (𝑦 = 𝑏 → (𝜒 ↔ 𝜃)) | 
| cbvral4vw.3 | ⊢ (𝑧 = 𝑐 → (𝜃 ↔ 𝜏)) | 
| cbvral4vw.4 | ⊢ (𝑤 = 𝑑 → (𝜏 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| cbvral4vw | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 𝜑 ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐶 ∀𝑑 ∈ 𝐷 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cbvral4vw.1 | . . . 4 ⊢ (𝑥 = 𝑎 → (𝜑 ↔ 𝜒)) | |
| 2 | 1 | ralbidv 3178 | . . 3 ⊢ (𝑥 = 𝑎 → (∀𝑤 ∈ 𝐷 𝜑 ↔ ∀𝑤 ∈ 𝐷 𝜒)) | 
| 3 | cbvral4vw.2 | . . . 4 ⊢ (𝑦 = 𝑏 → (𝜒 ↔ 𝜃)) | |
| 4 | 3 | ralbidv 3178 | . . 3 ⊢ (𝑦 = 𝑏 → (∀𝑤 ∈ 𝐷 𝜒 ↔ ∀𝑤 ∈ 𝐷 𝜃)) | 
| 5 | cbvral4vw.3 | . . . 4 ⊢ (𝑧 = 𝑐 → (𝜃 ↔ 𝜏)) | |
| 6 | 5 | ralbidv 3178 | . . 3 ⊢ (𝑧 = 𝑐 → (∀𝑤 ∈ 𝐷 𝜃 ↔ ∀𝑤 ∈ 𝐷 𝜏)) | 
| 7 | 2, 4, 6 | cbvral3vw 3243 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 𝜑 ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐶 ∀𝑤 ∈ 𝐷 𝜏) | 
| 8 | cbvral4vw.4 | . . . 4 ⊢ (𝑤 = 𝑑 → (𝜏 ↔ 𝜓)) | |
| 9 | 8 | cbvralvw 3237 | . . 3 ⊢ (∀𝑤 ∈ 𝐷 𝜏 ↔ ∀𝑑 ∈ 𝐷 𝜓) | 
| 10 | 9 | 3ralbii 3130 | . 2 ⊢ (∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐶 ∀𝑤 ∈ 𝐷 𝜏 ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐶 ∀𝑑 ∈ 𝐷 𝜓) | 
| 11 | 7, 10 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 𝜑 ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐶 ∀𝑑 ∈ 𝐷 𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∀wral 3061 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2816 df-ral 3062 | 
| This theorem is referenced by: cbvral6vw 3245 cbvral8vw 3246 | 
| Copyright terms: Public domain | W3C validator |