| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2rexbii | Structured version Visualization version GIF version | ||
| Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995.) |
| Ref | Expression |
|---|---|
| 2rexbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 2rexbii | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2rexbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | rexbii 3077 | . 2 ⊢ (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓) |
| 3 | 2 | rexbii 3077 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3055 |
| This theorem is referenced by: rexnal3 3117 3reeanv 3211 2nreu 4410 poxp2 8125 poxp3 8132 poseq 8140 1sdom 9202 ttrcltr 9676 addcompr 10981 mulcompr 10983 4fvwrd4 13616 ntrivcvgmul 15875 prodmo 15909 pythagtriplem2 16795 pythagtrip 16812 cat1 18066 isnsgrp 18657 efgrelexlemb 19687 ordthaus 23278 regr1lem2 23634 fmucndlem 24185 madeval2 27768 zaddscl 28289 zmulscld 28292 dfcgra2 28764 axpasch 28875 axeuclid 28897 axcontlem4 28901 umgr2edg1 29145 wwlksnwwlksnon 29852 xrofsup 32697 constrcbvlem 33752 satfvsucsuc 35359 satf0 35366 altopelaltxp 35971 brsegle 36103 fimgmcyclem 42528 fimgmcyc 42529 mzpcompact2lem 42746 sbc4rex 42784 7rexfrabdioph 42795 expdiophlem1 43017 fourierdlem42 46154 prpair 47506 ldepslinc 48502 sepnsepolem1 48914 |
| Copyright terms: Public domain | W3C validator |