| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2rexbii | Structured version Visualization version GIF version | ||
| Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995.) |
| Ref | Expression |
|---|---|
| 2rexbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 2rexbii | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2rexbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | rexbii 3079 | . 2 ⊢ (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓) |
| 3 | 2 | rexbii 3079 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-rex 3057 |
| This theorem is referenced by: rexnal3 3115 3reeanv 3205 2nreu 4394 poxp2 8073 poxp3 8080 poseq 8088 1sdom 9139 ttrcltr 9606 addcompr 10909 mulcompr 10911 4fvwrd4 13545 ntrivcvgmul 15806 prodmo 15840 pythagtriplem2 16726 pythagtrip 16743 cat1 18001 isnsgrp 18628 efgrelexlemb 19660 ordthaus 23297 regr1lem2 23653 fmucndlem 24203 madeval2 27792 zaddscl 28316 zmulscld 28319 zs12addscl 28385 dfcgra2 28806 axpasch 28917 axeuclid 28939 axcontlem4 28943 umgr2edg1 29187 wwlksnwwlksnon 29891 xrofsup 32745 constrcbvlem 33763 satfvsucsuc 35397 satf0 35404 altopelaltxp 36009 brsegle 36141 fimgmcyclem 42565 fimgmcyc 42566 mzpcompact2lem 42783 sbc4rex 42821 7rexfrabdioph 42832 expdiophlem1 43053 fourierdlem42 46186 prpair 47531 ldepslinc 48540 sepnsepolem1 48952 |
| Copyright terms: Public domain | W3C validator |