| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2rexbii | Structured version Visualization version GIF version | ||
| Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995.) |
| Ref | Expression |
|---|---|
| 2rexbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 2rexbii | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2rexbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | rexbii 3080 | . 2 ⊢ (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓) |
| 3 | 2 | rexbii 3080 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wrex 3057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-rex 3058 |
| This theorem is referenced by: rexnal3 3116 3reeanv 3206 2nreu 4393 poxp2 8079 poxp3 8086 poseq 8094 1sdom 9146 ttrcltr 9613 addcompr 10919 mulcompr 10921 4fvwrd4 13550 ntrivcvgmul 15811 prodmo 15845 pythagtriplem2 16731 pythagtrip 16748 cat1 18006 isnsgrp 18633 efgrelexlemb 19664 ordthaus 23300 regr1lem2 23656 fmucndlem 24206 madeval2 27795 zaddscl 28319 zmulscld 28322 zs12addscl 28388 dfcgra2 28809 axpasch 28921 axeuclid 28943 axcontlem4 28947 umgr2edg1 29191 wwlksnwwlksnon 29895 xrofsup 32754 constrcbvlem 33789 satfvsucsuc 35430 satf0 35437 altopelaltxp 36041 brsegle 36173 fimgmcyclem 42652 fimgmcyc 42653 mzpcompact2lem 42869 sbc4rex 42907 7rexfrabdioph 42918 expdiophlem1 43139 fourierdlem42 46272 prpair 47626 ldepslinc 48635 sepnsepolem1 49047 |
| Copyright terms: Public domain | W3C validator |