![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2rexbii | Structured version Visualization version GIF version |
Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995.) |
Ref | Expression |
---|---|
2rexbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2rexbii | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2rexbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | rexbii 3095 | . 2 ⊢ (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓) |
3 | 2 | rexbii 3095 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wrex 3071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-rex 3072 |
This theorem is referenced by: rexnal3 3137 3reeanv 3228 2nreu 4442 poxp2 8129 poxp3 8136 poseq 8144 1sdom 9248 ttrcltr 9711 addcompr 11016 mulcompr 11018 4fvwrd4 13621 ntrivcvgmul 15848 prodmo 15880 pythagtriplem2 16750 pythagtrip 16767 cat1 18047 isnsgrp 18614 efgrelexlemb 19618 ordthaus 22888 regr1lem2 23244 fmucndlem 23796 madeval2 27348 dfcgra2 28081 axpasch 28199 axeuclid 28221 axcontlem4 28225 umgr2edg1 28468 wwlksnwwlksnon 29169 xrofsup 31980 satfvsucsuc 34356 satf0 34363 altopelaltxp 34948 brsegle 35080 mzpcompact2lem 41489 sbc4rex 41527 7rexfrabdioph 41538 expdiophlem1 41760 fourierdlem42 44865 prpair 46169 ldepslinc 47190 sepnsepolem1 47554 |
Copyright terms: Public domain | W3C validator |