![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2rexbii | Structured version Visualization version GIF version |
Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995.) |
Ref | Expression |
---|---|
2rexbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2rexbii | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2rexbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | rexbii 3100 | . 2 ⊢ (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓) |
3 | 2 | rexbii 3100 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-rex 3077 |
This theorem is referenced by: rexnal3 3142 3reeanv 3236 2nreu 4467 poxp2 8184 poxp3 8191 poseq 8199 1sdom 9311 ttrcltr 9785 addcompr 11090 mulcompr 11092 4fvwrd4 13705 ntrivcvgmul 15950 prodmo 15984 pythagtriplem2 16864 pythagtrip 16881 cat1 18164 isnsgrp 18761 efgrelexlemb 19792 ordthaus 23413 regr1lem2 23769 fmucndlem 24321 madeval2 27910 zaddscl 28398 zmulscld 28401 dfcgra2 28856 axpasch 28974 axeuclid 28996 axcontlem4 29000 umgr2edg1 29246 wwlksnwwlksnon 29948 xrofsup 32774 satfvsucsuc 35333 satf0 35340 altopelaltxp 35940 brsegle 36072 fimgmcyclem 42488 fimgmcyc 42489 mzpcompact2lem 42707 sbc4rex 42745 7rexfrabdioph 42756 expdiophlem1 42978 fourierdlem42 46070 prpair 47375 ldepslinc 48238 sepnsepolem1 48601 |
Copyright terms: Public domain | W3C validator |