MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2rexbii Structured version   Visualization version   GIF version

Theorem 2rexbii 3130
Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995.)
Hypothesis
Ref Expression
2rexbii.1 (𝜑𝜓)
Assertion
Ref Expression
2rexbii (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝐴𝑦𝐵 𝜓)

Proof of Theorem 2rexbii
StepHypRef Expression
1 2rexbii.1 . . 3 (𝜑𝜓)
21rexbii 3095 . 2 (∃𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 𝜓)
32rexbii 3095 1 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝐴𝑦𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wrex 3071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783  df-rex 3072
This theorem is referenced by:  rexnal3  3137  3reeanv  3228  2nreu  4442  poxp2  8129  poxp3  8136  poseq  8144  1sdom  9248  ttrcltr  9711  addcompr  11016  mulcompr  11018  4fvwrd4  13621  ntrivcvgmul  15848  prodmo  15880  pythagtriplem2  16750  pythagtrip  16767  cat1  18047  isnsgrp  18614  efgrelexlemb  19618  ordthaus  22888  regr1lem2  23244  fmucndlem  23796  madeval2  27348  dfcgra2  28081  axpasch  28199  axeuclid  28221  axcontlem4  28225  umgr2edg1  28468  wwlksnwwlksnon  29169  xrofsup  31980  satfvsucsuc  34356  satf0  34363  altopelaltxp  34948  brsegle  35080  mzpcompact2lem  41489  sbc4rex  41527  7rexfrabdioph  41538  expdiophlem1  41760  fourierdlem42  44865  prpair  46169  ldepslinc  47190  sepnsepolem1  47554
  Copyright terms: Public domain W3C validator