| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2rexbii | Structured version Visualization version GIF version | ||
| Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995.) |
| Ref | Expression |
|---|---|
| 2rexbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 2rexbii | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2rexbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | rexbii 3076 | . 2 ⊢ (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓) |
| 3 | 2 | rexbii 3076 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: rexnal3 3116 3reeanv 3210 2nreu 4407 poxp2 8122 poxp3 8129 poseq 8137 1sdom 9195 ttrcltr 9669 addcompr 10974 mulcompr 10976 4fvwrd4 13609 ntrivcvgmul 15868 prodmo 15902 pythagtriplem2 16788 pythagtrip 16805 cat1 18059 isnsgrp 18650 efgrelexlemb 19680 ordthaus 23271 regr1lem2 23627 fmucndlem 24178 madeval2 27761 zaddscl 28282 zmulscld 28285 dfcgra2 28757 axpasch 28868 axeuclid 28890 axcontlem4 28894 umgr2edg1 29138 wwlksnwwlksnon 29845 xrofsup 32690 constrcbvlem 33745 satfvsucsuc 35352 satf0 35359 altopelaltxp 35964 brsegle 36096 fimgmcyclem 42521 fimgmcyc 42522 mzpcompact2lem 42739 sbc4rex 42777 7rexfrabdioph 42788 expdiophlem1 43010 fourierdlem42 46147 prpair 47502 ldepslinc 48498 sepnsepolem1 48910 |
| Copyright terms: Public domain | W3C validator |