![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2rexbii | Structured version Visualization version GIF version |
Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995.) |
Ref | Expression |
---|---|
2rexbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2rexbii | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2rexbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | rexbii 3092 | . 2 ⊢ (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓) |
3 | 2 | rexbii 3092 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∃wrex 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-rex 3069 |
This theorem is referenced by: rexnal3 3134 3reeanv 3228 2nreu 4450 poxp2 8167 poxp3 8174 poseq 8182 1sdom 9282 ttrcltr 9754 addcompr 11059 mulcompr 11061 4fvwrd4 13685 ntrivcvgmul 15935 prodmo 15969 pythagtriplem2 16851 pythagtrip 16868 cat1 18151 isnsgrp 18749 efgrelexlemb 19783 ordthaus 23408 regr1lem2 23764 fmucndlem 24316 madeval2 27907 zaddscl 28395 zmulscld 28398 dfcgra2 28853 axpasch 28971 axeuclid 28993 axcontlem4 28997 umgr2edg1 29243 wwlksnwwlksnon 29945 xrofsup 32778 satfvsucsuc 35350 satf0 35357 altopelaltxp 35958 brsegle 36090 fimgmcyclem 42520 fimgmcyc 42521 mzpcompact2lem 42739 sbc4rex 42777 7rexfrabdioph 42788 expdiophlem1 43010 fourierdlem42 46105 prpair 47426 ldepslinc 48355 sepnsepolem1 48718 |
Copyright terms: Public domain | W3C validator |