MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2rexbii Structured version   Visualization version   GIF version

Theorem 2rexbii 3109
Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995.)
Hypothesis
Ref Expression
2rexbii.1 (𝜑𝜓)
Assertion
Ref Expression
2rexbii (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝐴𝑦𝐵 𝜓)

Proof of Theorem 2rexbii
StepHypRef Expression
1 2rexbii.1 . . 3 (𝜑𝜓)
21rexbii 3080 . 2 (∃𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 𝜓)
32rexbii 3080 1 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝐴𝑦𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wrex 3057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-rex 3058
This theorem is referenced by:  rexnal3  3116  3reeanv  3206  2nreu  4393  poxp2  8079  poxp3  8086  poseq  8094  1sdom  9146  ttrcltr  9613  addcompr  10919  mulcompr  10921  4fvwrd4  13550  ntrivcvgmul  15811  prodmo  15845  pythagtriplem2  16731  pythagtrip  16748  cat1  18006  isnsgrp  18633  efgrelexlemb  19664  ordthaus  23300  regr1lem2  23656  fmucndlem  24206  madeval2  27795  zaddscl  28319  zmulscld  28322  zs12addscl  28388  dfcgra2  28809  axpasch  28921  axeuclid  28943  axcontlem4  28947  umgr2edg1  29191  wwlksnwwlksnon  29895  xrofsup  32754  constrcbvlem  33789  satfvsucsuc  35430  satf0  35437  altopelaltxp  36041  brsegle  36173  fimgmcyclem  42652  fimgmcyc  42653  mzpcompact2lem  42869  sbc4rex  42907  7rexfrabdioph  42918  expdiophlem1  43139  fourierdlem42  46272  prpair  47626  ldepslinc  48635  sepnsepolem1  49047
  Copyright terms: Public domain W3C validator