| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2rexbii | Structured version Visualization version GIF version | ||
| Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995.) |
| Ref | Expression |
|---|---|
| 2rexbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 2rexbii | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2rexbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | rexbii 3082 | . 2 ⊢ (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓) |
| 3 | 2 | rexbii 3082 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wrex 3059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-rex 3060 |
| This theorem is referenced by: rexnal3 3121 3reeanv 3212 2nreu 4417 poxp2 8137 poxp3 8144 poseq 8152 1sdom 9251 ttrcltr 9723 addcompr 11028 mulcompr 11030 4fvwrd4 13655 ntrivcvgmul 15907 prodmo 15941 pythagtriplem2 16824 pythagtrip 16841 cat1 18097 isnsgrp 18688 efgrelexlemb 19718 ordthaus 23309 regr1lem2 23665 fmucndlem 24216 madeval2 27797 zaddscl 28285 zmulscld 28288 dfcgra2 28743 axpasch 28854 axeuclid 28876 axcontlem4 28880 umgr2edg1 29124 wwlksnwwlksnon 29831 xrofsup 32681 constrcbvlem 33724 satfvsucsuc 35316 satf0 35323 altopelaltxp 35923 brsegle 36055 fimgmcyclem 42488 fimgmcyc 42489 mzpcompact2lem 42706 sbc4rex 42744 7rexfrabdioph 42755 expdiophlem1 42977 fourierdlem42 46114 prpair 47441 ldepslinc 48379 sepnsepolem1 48790 |
| Copyright terms: Public domain | W3C validator |