Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2rexbii | Structured version Visualization version GIF version |
Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995.) |
Ref | Expression |
---|---|
2rexbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2rexbii | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2rexbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | rexbii 3093 | . 2 ⊢ (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓) |
3 | 2 | rexbii 3093 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wrex 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 df-rex 3071 |
This theorem is referenced by: rexnal3 3129 3reeanv 3214 2nreu 4387 poseq 8037 1sdom 9105 ttrcltr 9565 addcompr 10870 mulcompr 10872 4fvwrd4 13469 ntrivcvgmul 15705 prodmo 15737 pythagtriplem2 16607 pythagtrip 16624 cat1 17901 isnsgrp 18468 efgrelexlemb 19443 ordthaus 22633 regr1lem2 22989 fmucndlem 23541 dfcgra2 27421 axpasch 27539 axeuclid 27561 axcontlem4 27565 umgr2edg1 27808 wwlksnwwlksnon 28509 xrofsup 31318 satfvsucsuc 33567 satf0 33574 poxp2 34016 poxp3 34022 madeval2 34128 altopelaltxp 34369 brsegle 34501 mzpcompact2lem 40823 sbc4rex 40861 7rexfrabdioph 40872 expdiophlem1 41094 fourierdlem42 44015 prpair 45293 ldepslinc 46190 sepnsepolem1 46555 |
Copyright terms: Public domain | W3C validator |