| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2rexbii | Structured version Visualization version GIF version | ||
| Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995.) |
| Ref | Expression |
|---|---|
| 2rexbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 2rexbii | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2rexbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | rexbii 3083 | . 2 ⊢ (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓) |
| 3 | 2 | rexbii 3083 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wrex 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3061 |
| This theorem is referenced by: rexnal3 3123 3reeanv 3214 2nreu 4419 poxp2 8142 poxp3 8149 poseq 8157 1sdom 9256 ttrcltr 9730 addcompr 11035 mulcompr 11037 4fvwrd4 13665 ntrivcvgmul 15918 prodmo 15952 pythagtriplem2 16837 pythagtrip 16854 cat1 18110 isnsgrp 18701 efgrelexlemb 19731 ordthaus 23322 regr1lem2 23678 fmucndlem 24229 madeval2 27813 zaddscl 28334 zmulscld 28337 dfcgra2 28809 axpasch 28920 axeuclid 28942 axcontlem4 28946 umgr2edg1 29190 wwlksnwwlksnon 29897 xrofsup 32744 constrcbvlem 33789 satfvsucsuc 35387 satf0 35394 altopelaltxp 35994 brsegle 36126 fimgmcyclem 42556 fimgmcyc 42557 mzpcompact2lem 42774 sbc4rex 42812 7rexfrabdioph 42823 expdiophlem1 43045 fourierdlem42 46178 prpair 47515 ldepslinc 48485 sepnsepolem1 48896 |
| Copyright terms: Public domain | W3C validator |