Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2rexbii | Structured version Visualization version GIF version |
Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995.) |
Ref | Expression |
---|---|
rexbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2rexbii | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | rexbii 3177 | . 2 ⊢ (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓) |
3 | 2 | rexbii 3177 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-rex 3069 |
This theorem is referenced by: rexnal3 3187 3reeanv 3293 2nreu 4372 addcompr 10708 mulcompr 10710 4fvwrd4 13305 ntrivcvgmul 15542 prodmo 15574 pythagtriplem2 16446 pythagtrip 16463 cat1 17728 isnsgrp 18294 efgrelexlemb 19271 ordthaus 22443 regr1lem2 22799 fmucndlem 23351 dfcgra2 27095 axpasch 27212 axeuclid 27234 axcontlem4 27238 umgr2edg1 27481 wwlksnwwlksnon 28181 xrofsup 30992 satfvsucsuc 33227 satf0 33234 ttrcltr 33702 poxp2 33717 poxp3 33723 poseq 33729 madeval2 33964 altopelaltxp 34205 brsegle 34337 mzpcompact2lem 40489 sbc4rex 40527 7rexfrabdioph 40538 expdiophlem1 40759 fourierdlem42 43580 prpair 44841 ldepslinc 45738 sepnsepolem1 46103 |
Copyright terms: Public domain | W3C validator |