Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2rexbii | Structured version Visualization version GIF version |
Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995.) |
Ref | Expression |
---|---|
rexbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2rexbii | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | rexbii 3181 | . 2 ⊢ (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓) |
3 | 2 | rexbii 3181 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-rex 3070 |
This theorem is referenced by: rexnal3 3188 3reeanv 3295 2nreu 4375 ttrcltr 9474 addcompr 10777 mulcompr 10779 4fvwrd4 13376 ntrivcvgmul 15614 prodmo 15646 pythagtriplem2 16518 pythagtrip 16535 cat1 17812 isnsgrp 18379 efgrelexlemb 19356 ordthaus 22535 regr1lem2 22891 fmucndlem 23443 dfcgra2 27191 axpasch 27309 axeuclid 27331 axcontlem4 27335 umgr2edg1 27578 wwlksnwwlksnon 28280 xrofsup 31090 satfvsucsuc 33327 satf0 33334 poxp2 33790 poxp3 33796 poseq 33802 madeval2 34037 altopelaltxp 34278 brsegle 34410 mzpcompact2lem 40573 sbc4rex 40611 7rexfrabdioph 40622 expdiophlem1 40843 fourierdlem42 43690 prpair 44953 ldepslinc 45850 sepnsepolem1 46215 |
Copyright terms: Public domain | W3C validator |