MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2rexbii Structured version   Visualization version   GIF version

Theorem 2rexbii 3114
Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995.)
Hypothesis
Ref Expression
2rexbii.1 (𝜑𝜓)
Assertion
Ref Expression
2rexbii (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝐴𝑦𝐵 𝜓)

Proof of Theorem 2rexbii
StepHypRef Expression
1 2rexbii.1 . . 3 (𝜑𝜓)
21rexbii 3082 . 2 (∃𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 𝜓)
32rexbii 3082 1 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝐴𝑦𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wrex 3059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-rex 3060
This theorem is referenced by:  rexnal3  3121  3reeanv  3212  2nreu  4417  poxp2  8137  poxp3  8144  poseq  8152  1sdom  9251  ttrcltr  9723  addcompr  11028  mulcompr  11030  4fvwrd4  13655  ntrivcvgmul  15907  prodmo  15941  pythagtriplem2  16824  pythagtrip  16841  cat1  18097  isnsgrp  18688  efgrelexlemb  19718  ordthaus  23309  regr1lem2  23665  fmucndlem  24216  madeval2  27797  zaddscl  28285  zmulscld  28288  dfcgra2  28743  axpasch  28854  axeuclid  28876  axcontlem4  28880  umgr2edg1  29124  wwlksnwwlksnon  29831  xrofsup  32681  constrcbvlem  33724  satfvsucsuc  35316  satf0  35323  altopelaltxp  35923  brsegle  36055  fimgmcyclem  42488  fimgmcyc  42489  mzpcompact2lem  42706  sbc4rex  42744  7rexfrabdioph  42755  expdiophlem1  42977  fourierdlem42  46114  prpair  47441  ldepslinc  48379  sepnsepolem1  48790
  Copyright terms: Public domain W3C validator