| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2rexbii | Structured version Visualization version GIF version | ||
| Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995.) |
| Ref | Expression |
|---|---|
| 2rexbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 2rexbii | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2rexbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | rexbii 3076 | . 2 ⊢ (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓) |
| 3 | 2 | rexbii 3076 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: rexnal3 3112 3reeanv 3202 2nreu 4397 poxp2 8083 poxp3 8090 poseq 8098 1sdom 9154 ttrcltr 9631 addcompr 10934 mulcompr 10936 4fvwrd4 13569 ntrivcvgmul 15827 prodmo 15861 pythagtriplem2 16747 pythagtrip 16764 cat1 18022 isnsgrp 18615 efgrelexlemb 19647 ordthaus 23287 regr1lem2 23643 fmucndlem 24194 madeval2 27781 zaddscl 28305 zmulscld 28308 zs12addscl 28372 dfcgra2 28793 axpasch 28904 axeuclid 28926 axcontlem4 28930 umgr2edg1 29174 wwlksnwwlksnon 29878 xrofsup 32723 constrcbvlem 33721 satfvsucsuc 35337 satf0 35344 altopelaltxp 35949 brsegle 36081 fimgmcyclem 42506 fimgmcyc 42507 mzpcompact2lem 42724 sbc4rex 42762 7rexfrabdioph 42773 expdiophlem1 42994 fourierdlem42 46131 prpair 47486 ldepslinc 48495 sepnsepolem1 48907 |
| Copyright terms: Public domain | W3C validator |