![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2rexbii | Structured version Visualization version GIF version |
Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995.) |
Ref | Expression |
---|---|
2rexbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2rexbii | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2rexbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | rexbii 3094 | . 2 ⊢ (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓) |
3 | 2 | rexbii 3094 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wrex 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-rex 3071 |
This theorem is referenced by: rexnal3 3136 3reeanv 3227 2nreu 4441 poxp2 8131 poxp3 8138 poseq 8146 1sdom 9250 ttrcltr 9713 addcompr 11018 mulcompr 11020 4fvwrd4 13623 ntrivcvgmul 15850 prodmo 15882 pythagtriplem2 16752 pythagtrip 16769 cat1 18049 isnsgrp 18616 efgrelexlemb 19620 ordthaus 22895 regr1lem2 23251 fmucndlem 23803 madeval2 27356 dfcgra2 28119 axpasch 28237 axeuclid 28259 axcontlem4 28263 umgr2edg1 28506 wwlksnwwlksnon 29207 xrofsup 32018 satfvsucsuc 34425 satf0 34432 altopelaltxp 35017 brsegle 35149 mzpcompact2lem 41571 sbc4rex 41609 7rexfrabdioph 41620 expdiophlem1 41842 fourierdlem42 44944 prpair 46248 ldepslinc 47268 sepnsepolem1 47632 |
Copyright terms: Public domain | W3C validator |