Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpllr | Structured version Visualization version GIF version |
Description: Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009.) (Proof shortened by Wolf Lammen, 6-Apr-2022.) |
Ref | Expression |
---|---|
simpllr | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | 1 | ad3antlr 727 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜓) |
Copyright terms: Public domain | W3C validator |