| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4anpull2 | Structured version Visualization version GIF version | ||
| Description: An equivalence of two four-terms conjunctions with the terms regrouped (here, the second sub-conjunct of the first term is pulled separately). (Contributed by Zhi Wang, 4-Sep-2024.) |
| Ref | Expression |
|---|---|
| 4anpull2 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒 ∧ 𝜃) ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass 468 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃)))) | |
| 2 | anass 468 | . . 3 ⊢ (((𝜑 ∧ (𝜒 ∧ 𝜃)) ∧ 𝜓) ↔ (𝜑 ∧ ((𝜒 ∧ 𝜃) ∧ 𝜓))) | |
| 3 | 3anass 1095 | . . . 4 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ (𝜒 ∧ 𝜃))) | |
| 4 | 3 | anbi1i 624 | . . 3 ⊢ (((𝜑 ∧ 𝜒 ∧ 𝜃) ∧ 𝜓) ↔ ((𝜑 ∧ (𝜒 ∧ 𝜃)) ∧ 𝜓)) |
| 5 | ancom 460 | . . . 4 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜒 ∧ 𝜃) ∧ 𝜓)) | |
| 6 | 5 | anbi2i 623 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) ↔ (𝜑 ∧ ((𝜒 ∧ 𝜃) ∧ 𝜓))) |
| 7 | 2, 4, 6 | 3bitr4ri 304 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) ↔ ((𝜑 ∧ 𝜒 ∧ 𝜃) ∧ 𝜓)) |
| 8 | 1, 7 | bitri 275 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒 ∧ 𝜃) ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
| This theorem is referenced by: evenwodadd 46876 iscnrm3lem4 48806 |
| Copyright terms: Public domain | W3C validator |