MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anassrs Structured version   Visualization version   GIF version

Theorem 3anassrs 1361
Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypothesis
Ref Expression
3anassrs.1 ((𝜑 ∧ (𝜓𝜒𝜃)) → 𝜏)
Assertion
Ref Expression
3anassrs ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)

Proof of Theorem 3anassrs
StepHypRef Expression
1 3anassrs.1 . . 3 ((𝜑 ∧ (𝜓𝜒𝜃)) → 𝜏)
213exp2 1355 . 2 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
32imp41 425 1 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  ralrimivvva  3183  euotd  5473  dfgrp3e  18972  kerf1ghm  19179  psgndif  21511  neiptopnei  23019  neitr  23067  neitx  23494  cnextcn  23954  utoptop  24122  ustuqtoplem  24127  ustuqtop1  24129  utopsnneiplem  24135  utop3cls  24139  neipcfilu  24183  xmetpsmet  24236  metustsym  24443  grporcan  30447  disjdsct  32626  xrofsup  32690  omndmul2  33026  archirngz  33143  archiabllem1  33147  archiabllem2c  33149  reofld  33315  prmidl2  33412  pstmfval  33886  tpr2rico  33902  esumpcvgval  34068  esumcvg  34076  esum2d  34083  voliune  34219  signsply0  34542  signstfvneq0  34563  f1o2d2  42221
  Copyright terms: Public domain W3C validator