| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anassrs | Structured version Visualization version GIF version | ||
| Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| 3anassrs.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| 3anassrs | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anassrs.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | |
| 2 | 1 | 3exp2 1355 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| 3 | 2 | imp41 425 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ralrimivvva 3191 euotd 5493 dfgrp3e 19028 kerf1ghm 19235 psgndif 21567 neiptopnei 23075 neitr 23123 neitx 23550 cnextcn 24010 utoptop 24178 ustuqtoplem 24183 ustuqtop1 24185 utopsnneiplem 24191 utop3cls 24195 neipcfilu 24239 xmetpsmet 24292 metustsym 24499 grporcan 30504 disjdsct 32685 xrofsup 32749 omndmul2 33085 archirngz 33192 archiabllem1 33196 archiabllem2c 33198 reofld 33364 prmidl2 33461 pstmfval 33932 tpr2rico 33948 esumpcvgval 34114 esumcvg 34122 esum2d 34129 voliune 34265 signsply0 34588 signstfvneq0 34609 f1o2d2 42251 |
| Copyright terms: Public domain | W3C validator |