| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anassrs | Structured version Visualization version GIF version | ||
| Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| 3anassrs.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| 3anassrs | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anassrs.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | |
| 2 | 1 | 3exp2 1355 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| 3 | 2 | imp41 425 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ralrimivvva 3181 euotd 5468 dfgrp3e 18948 kerf1ghm 19155 psgndif 21487 neiptopnei 22995 neitr 23043 neitx 23470 cnextcn 23930 utoptop 24098 ustuqtoplem 24103 ustuqtop1 24105 utopsnneiplem 24111 utop3cls 24115 neipcfilu 24159 xmetpsmet 24212 metustsym 24419 grporcan 30420 disjdsct 32599 xrofsup 32663 omndmul2 32999 archirngz 33116 archiabllem1 33120 archiabllem2c 33122 reofld 33288 prmidl2 33385 pstmfval 33859 tpr2rico 33875 esumpcvgval 34041 esumcvg 34049 esum2d 34056 voliune 34192 signsply0 34515 signstfvneq0 34536 f1o2d2 42194 |
| Copyright terms: Public domain | W3C validator |