![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anassrs | Structured version Visualization version GIF version |
Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
3anassrs.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
3anassrs | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anassrs.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | |
2 | 1 | 3exp2 1355 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
3 | 2 | imp41 427 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: ralrimivvva 3204 euotd 5514 dfgrp3e 18923 kerf1ghm 20282 psgndif 21155 neiptopnei 22636 neitr 22684 neitx 23111 cnextcn 23571 utoptop 23739 ustuqtoplem 23744 ustuqtop1 23746 utopsnneiplem 23752 utop3cls 23756 neipcfilu 23801 xmetpsmet 23854 metustsym 24064 grporcan 29771 disjdsct 31924 xrofsup 31980 omndmul2 32230 archirngz 32335 archiabllem1 32339 archiabllem2c 32341 reofld 32459 prmidl2 32559 pstmfval 32876 tpr2rico 32892 esumpcvgval 33076 esumcvg 33084 esum2d 33091 voliune 33227 signsply0 33562 signstfvneq0 33583 f1o2d2 41055 |
Copyright terms: Public domain | W3C validator |