| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anassrs | Structured version Visualization version GIF version | ||
| Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| 3anassrs.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| 3anassrs | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anassrs.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | |
| 2 | 1 | 3exp2 1354 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| 3 | 2 | imp41 425 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ralrimivvva 3192 euotd 5498 dfgrp3e 19028 kerf1ghm 19235 psgndif 21575 neiptopnei 23087 neitr 23135 neitx 23562 cnextcn 24022 utoptop 24190 ustuqtoplem 24195 ustuqtop1 24197 utopsnneiplem 24203 utop3cls 24207 neipcfilu 24251 xmetpsmet 24304 metustsym 24513 grporcan 30466 disjdsct 32648 xrofsup 32713 omndmul2 33033 archirngz 33140 archiabllem1 33144 archiabllem2c 33146 reofld 33312 prmidl2 33409 pstmfval 33870 tpr2rico 33886 esumpcvgval 34054 esumcvg 34062 esum2d 34069 voliune 34205 signsply0 34541 signstfvneq0 34562 f1o2d2 42248 |
| Copyright terms: Public domain | W3C validator |