| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anassrs | Structured version Visualization version GIF version | ||
| Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| 3anassrs.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| 3anassrs | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anassrs.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | |
| 2 | 1 | 3exp2 1355 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| 3 | 2 | imp41 425 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ralrimivvva 3175 euotd 5460 dfgrp3e 18938 kerf1ghm 19145 omndmul2 20031 psgndif 21528 neiptopnei 23036 neitr 23084 neitx 23511 cnextcn 23971 utoptop 24139 ustuqtoplem 24144 ustuqtop1 24146 utopsnneiplem 24152 utop3cls 24156 neipcfilu 24200 xmetpsmet 24253 metustsym 24460 grporcan 30481 disjdsct 32664 xrofsup 32729 archirngz 33150 archiabllem1 33154 archiabllem2c 33156 reofld 33300 prmidl2 33397 pstmfval 33882 tpr2rico 33898 esumpcvgval 34064 esumcvg 34072 esum2d 34079 voliune 34215 signsply0 34538 signstfvneq0 34559 f1o2d2 42226 |
| Copyright terms: Public domain | W3C validator |