![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anassrs | Structured version Visualization version GIF version |
Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
3anassrs.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
3anassrs | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anassrs.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | |
2 | 1 | 3exp2 1353 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
3 | 2 | imp41 425 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: ralrimivvva 3203 euotd 5523 dfgrp3e 19071 kerf1ghm 19278 psgndif 21638 neiptopnei 23156 neitr 23204 neitx 23631 cnextcn 24091 utoptop 24259 ustuqtoplem 24264 ustuqtop1 24266 utopsnneiplem 24272 utop3cls 24276 neipcfilu 24321 xmetpsmet 24374 metustsym 24584 grporcan 30547 disjdsct 32718 xrofsup 32778 omndmul2 33072 archirngz 33179 archiabllem1 33183 archiabllem2c 33185 reofld 33352 prmidl2 33449 pstmfval 33857 tpr2rico 33873 esumpcvgval 34059 esumcvg 34067 esum2d 34074 voliune 34210 signsply0 34545 signstfvneq0 34566 f1o2d2 42253 |
Copyright terms: Public domain | W3C validator |