| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anassrs | Structured version Visualization version GIF version | ||
| Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| 3anassrs.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| 3anassrs | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anassrs.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | |
| 2 | 1 | 3exp2 1355 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| 3 | 2 | imp41 425 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ralrimivvva 3179 euotd 5458 dfgrp3e 18961 kerf1ghm 19167 omndmul2 20053 psgndif 21548 neiptopnei 23067 neitr 23115 neitx 23542 cnextcn 24002 utoptop 24169 ustuqtoplem 24174 ustuqtop1 24176 utopsnneiplem 24182 utop3cls 24186 neipcfilu 24230 xmetpsmet 24283 metustsym 24490 grporcan 30519 disjdsct 32708 xrofsup 32775 archirngz 33199 archiabllem1 33203 archiabllem2c 33205 reofld 33352 prmidl2 33450 pstmfval 33981 tpr2rico 33997 esumpcvgval 34163 esumcvg 34171 esum2d 34178 voliune 34314 signsply0 34636 signstfvneq0 34657 f1o2d2 42404 |
| Copyright terms: Public domain | W3C validator |