| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anassrs | Structured version Visualization version GIF version | ||
| Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| 3anassrs.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| 3anassrs | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anassrs.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | |
| 2 | 1 | 3exp2 1355 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| 3 | 2 | imp41 425 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ralrimivvva 3178 euotd 5448 dfgrp3e 18948 kerf1ghm 19154 omndmul2 20040 psgndif 21534 neiptopnei 23042 neitr 23090 neitx 23517 cnextcn 23977 utoptop 24144 ustuqtoplem 24149 ustuqtop1 24151 utopsnneiplem 24157 utop3cls 24161 neipcfilu 24205 xmetpsmet 24258 metustsym 24465 grporcan 30490 disjdsct 32676 xrofsup 32742 archirngz 33150 archiabllem1 33154 archiabllem2c 33156 reofld 33300 prmidl2 33398 pstmfval 33901 tpr2rico 33917 esumpcvgval 34083 esumcvg 34091 esum2d 34098 voliune 34234 signsply0 34556 signstfvneq0 34577 f1o2d2 42266 |
| Copyright terms: Public domain | W3C validator |