Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anassrs | Structured version Visualization version GIF version |
Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
3anassrs.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
3anassrs | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anassrs.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | |
2 | 1 | 3exp2 1353 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
3 | 2 | imp41 426 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: ralrimivvva 3127 euotd 5427 dfgrp3e 18675 kerf1ghm 19987 psgndif 20807 neiptopnei 22283 neitr 22331 neitx 22758 cnextcn 23218 utoptop 23386 ustuqtoplem 23391 ustuqtop1 23393 utopsnneiplem 23399 utop3cls 23403 neipcfilu 23448 xmetpsmet 23501 metustsym 23711 grporcan 28880 disjdsct 31035 xrofsup 31090 omndmul2 31338 archirngz 31443 archiabllem1 31447 archiabllem2c 31449 reofld 31544 prmidl2 31616 pstmfval 31846 tpr2rico 31862 esumpcvgval 32046 esumcvg 32054 esum2d 32061 voliune 32197 signsply0 32530 signstfvneq0 32551 |
Copyright terms: Public domain | W3C validator |