MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anassrs Structured version   Visualization version   GIF version

Theorem 3anassrs 1361
Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypothesis
Ref Expression
3anassrs.1 ((𝜑 ∧ (𝜓𝜒𝜃)) → 𝜏)
Assertion
Ref Expression
3anassrs ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)

Proof of Theorem 3anassrs
StepHypRef Expression
1 3anassrs.1 . . 3 ((𝜑 ∧ (𝜓𝜒𝜃)) → 𝜏)
213exp2 1355 . 2 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
32imp41 425 1 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  ralrimivvva  3175  euotd  5460  dfgrp3e  18938  kerf1ghm  19145  omndmul2  20031  psgndif  21528  neiptopnei  23036  neitr  23084  neitx  23511  cnextcn  23971  utoptop  24139  ustuqtoplem  24144  ustuqtop1  24146  utopsnneiplem  24152  utop3cls  24156  neipcfilu  24200  xmetpsmet  24253  metustsym  24460  grporcan  30481  disjdsct  32664  xrofsup  32729  archirngz  33150  archiabllem1  33154  archiabllem2c  33156  reofld  33300  prmidl2  33397  pstmfval  33882  tpr2rico  33898  esumpcvgval  34064  esumcvg  34072  esum2d  34079  voliune  34215  signsply0  34538  signstfvneq0  34559  f1o2d2  42226
  Copyright terms: Public domain W3C validator