![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anassrs | Structured version Visualization version GIF version |
Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
3anassrs.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
3anassrs | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anassrs.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | |
2 | 1 | 3exp2 1354 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
3 | 2 | imp41 426 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 |
This theorem is referenced by: ralrimivvva 3203 euotd 5513 dfgrp3e 18925 kerf1ghm 20286 psgndif 21161 neiptopnei 22643 neitr 22691 neitx 23118 cnextcn 23578 utoptop 23746 ustuqtoplem 23751 ustuqtop1 23753 utopsnneiplem 23759 utop3cls 23763 neipcfilu 23808 xmetpsmet 23861 metustsym 24071 grporcan 29809 disjdsct 31962 xrofsup 32018 omndmul2 32271 archirngz 32376 archiabllem1 32380 archiabllem2c 32382 reofld 32500 prmidl2 32604 pstmfval 32945 tpr2rico 32961 esumpcvgval 33145 esumcvg 33153 esum2d 33160 voliune 33296 signsply0 33631 signstfvneq0 33652 f1o2d2 41141 |
Copyright terms: Public domain | W3C validator |