Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anassrs | Structured version Visualization version GIF version |
Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
3anassrs.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
3anassrs | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anassrs.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | |
2 | 1 | 3exp2 1352 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
3 | 2 | imp41 425 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: ralrimivvva 3115 euotd 5421 dfgrp3e 18590 kerf1ghm 19902 psgndif 20719 neiptopnei 22191 neitr 22239 neitx 22666 cnextcn 23126 utoptop 23294 ustuqtoplem 23299 ustuqtop1 23301 utopsnneiplem 23307 utop3cls 23311 neipcfilu 23356 xmetpsmet 23409 metustsym 23617 grporcan 28781 disjdsct 30937 xrofsup 30992 omndmul2 31240 archirngz 31345 archiabllem1 31349 archiabllem2c 31351 reofld 31446 prmidl2 31518 pstmfval 31748 tpr2rico 31764 esumpcvgval 31946 esumcvg 31954 esum2d 31961 voliune 32097 signsply0 32430 signstfvneq0 32451 |
Copyright terms: Public domain | W3C validator |