![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anassrs | Structured version Visualization version GIF version |
Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
3anassrs.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
3anassrs | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anassrs.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | |
2 | 1 | 3exp2 1352 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
3 | 2 | imp41 425 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: ralrimivvva 3199 euotd 5510 dfgrp3e 18990 kerf1ghm 19195 psgndif 21528 neiptopnei 23030 neitr 23078 neitx 23505 cnextcn 23965 utoptop 24133 ustuqtoplem 24138 ustuqtop1 24140 utopsnneiplem 24146 utop3cls 24150 neipcfilu 24195 xmetpsmet 24248 metustsym 24458 grporcan 30322 disjdsct 32477 xrofsup 32532 omndmul2 32787 archirngz 32892 archiabllem1 32896 archiabllem2c 32898 reofld 33051 prmidl2 33152 pstmfval 33492 tpr2rico 33508 esumpcvgval 33692 esumcvg 33700 esum2d 33707 voliune 33843 signsply0 34178 signstfvneq0 34199 f1o2d2 41715 |
Copyright terms: Public domain | W3C validator |