| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anassrs | Structured version Visualization version GIF version | ||
| Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| 3anassrs.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| 3anassrs | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anassrs.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | |
| 2 | 1 | 3exp2 1355 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| 3 | 2 | imp41 425 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ralrimivvva 3183 euotd 5473 dfgrp3e 18972 kerf1ghm 19179 psgndif 21511 neiptopnei 23019 neitr 23067 neitx 23494 cnextcn 23954 utoptop 24122 ustuqtoplem 24127 ustuqtop1 24129 utopsnneiplem 24135 utop3cls 24139 neipcfilu 24183 xmetpsmet 24236 metustsym 24443 grporcan 30447 disjdsct 32626 xrofsup 32690 omndmul2 33026 archirngz 33143 archiabllem1 33147 archiabllem2c 33149 reofld 33315 prmidl2 33412 pstmfval 33886 tpr2rico 33902 esumpcvgval 34068 esumcvg 34076 esum2d 34083 voliune 34219 signsply0 34542 signstfvneq0 34563 f1o2d2 42221 |
| Copyright terms: Public domain | W3C validator |