![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anassrs | Structured version Visualization version GIF version |
Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
3anassrs.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
3anassrs | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anassrs.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | |
2 | 1 | 3exp2 1354 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
3 | 2 | imp41 425 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: ralrimivvva 3211 euotd 5532 dfgrp3e 19080 kerf1ghm 19287 psgndif 21643 neiptopnei 23161 neitr 23209 neitx 23636 cnextcn 24096 utoptop 24264 ustuqtoplem 24269 ustuqtop1 24271 utopsnneiplem 24277 utop3cls 24281 neipcfilu 24326 xmetpsmet 24379 metustsym 24589 grporcan 30550 disjdsct 32714 xrofsup 32774 omndmul2 33062 archirngz 33169 archiabllem1 33173 archiabllem2c 33175 reofld 33337 prmidl2 33434 pstmfval 33842 tpr2rico 33858 esumpcvgval 34042 esumcvg 34050 esum2d 34057 voliune 34193 signsply0 34528 signstfvneq0 34549 f1o2d2 42228 |
Copyright terms: Public domain | W3C validator |