| Mathbox for Ender Ting |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > evenwodadd | Structured version Visualization version GIF version | ||
| Description: If an integer is multiplied by its sum with an odd number (thus changing its parity), the result is even. (Contributed by Ender Ting, 30-Apr-2025.) |
| Ref | Expression |
|---|---|
| evenwodadd.1 | ⊢ (𝜑 → 𝑖 ∈ ℤ) |
| evenwodadd.2 | ⊢ (𝜑 → 𝑗 ∈ ℤ) |
| evenwodadd.3 | ⊢ (𝜑 → ¬ 2 ∥ 𝑗) |
| Ref | Expression |
|---|---|
| evenwodadd | ⊢ (𝜑 → 2 ∥ (𝑖 · (𝑖 + 𝑗))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z 12645 | . . . 4 ⊢ 2 ∈ ℤ | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 2 ∈ ℤ) |
| 3 | evenwodadd.1 | . . 3 ⊢ (𝜑 → 𝑖 ∈ ℤ) | |
| 4 | evenwodadd.2 | . . . 4 ⊢ (𝜑 → 𝑗 ∈ ℤ) | |
| 5 | 3, 4 | zaddcld 12722 | . . 3 ⊢ (𝜑 → (𝑖 + 𝑗) ∈ ℤ) |
| 6 | dvdsmultr1 16329 | . . 3 ⊢ ((2 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ (𝑖 + 𝑗) ∈ ℤ) → (2 ∥ 𝑖 → 2 ∥ (𝑖 · (𝑖 + 𝑗)))) | |
| 7 | 2, 3, 5, 6 | syl3anc 1373 | . 2 ⊢ (𝜑 → (2 ∥ 𝑖 → 2 ∥ (𝑖 · (𝑖 + 𝑗)))) |
| 8 | evenwodadd.3 | . . . 4 ⊢ (𝜑 → ¬ 2 ∥ 𝑗) | |
| 9 | 4anpull2 1362 | . . . . . 6 ⊢ (((𝑖 ∈ ℤ ∧ ¬ 2 ∥ 𝑖) ∧ (𝑗 ∈ ℤ ∧ ¬ 2 ∥ 𝑗)) ↔ ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ ¬ 2 ∥ 𝑗) ∧ ¬ 2 ∥ 𝑖)) | |
| 10 | opoe 16396 | . . . . . 6 ⊢ (((𝑖 ∈ ℤ ∧ ¬ 2 ∥ 𝑖) ∧ (𝑗 ∈ ℤ ∧ ¬ 2 ∥ 𝑗)) → 2 ∥ (𝑖 + 𝑗)) | |
| 11 | 9, 10 | sylbir 235 | . . . . 5 ⊢ (((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ ¬ 2 ∥ 𝑗) ∧ ¬ 2 ∥ 𝑖) → 2 ∥ (𝑖 + 𝑗)) |
| 12 | 11 | ex 412 | . . . 4 ⊢ ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ ¬ 2 ∥ 𝑗) → (¬ 2 ∥ 𝑖 → 2 ∥ (𝑖 + 𝑗))) |
| 13 | 3, 4, 8, 12 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (¬ 2 ∥ 𝑖 → 2 ∥ (𝑖 + 𝑗))) |
| 14 | dvdsmultr2 16331 | . . . 4 ⊢ ((2 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ (𝑖 + 𝑗) ∈ ℤ) → (2 ∥ (𝑖 + 𝑗) → 2 ∥ (𝑖 · (𝑖 + 𝑗)))) | |
| 15 | 2, 3, 5, 14 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (2 ∥ (𝑖 + 𝑗) → 2 ∥ (𝑖 · (𝑖 + 𝑗)))) |
| 16 | 13, 15 | syld 47 | . 2 ⊢ (𝜑 → (¬ 2 ∥ 𝑖 → 2 ∥ (𝑖 · (𝑖 + 𝑗)))) |
| 17 | 7, 16 | pm2.61d 179 | 1 ⊢ (𝜑 → 2 ∥ (𝑖 · (𝑖 + 𝑗))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 class class class wbr 5141 (class class class)co 7429 + caddc 11154 · cmul 11156 2c2 12317 ℤcz 12609 ∥ cdvds 16286 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-resscn 11208 ax-1cn 11209 ax-icn 11210 ax-addcl 11211 ax-addrcl 11212 ax-mulcl 11213 ax-mulrcl 11214 ax-mulcom 11215 ax-addass 11216 ax-mulass 11217 ax-distr 11218 ax-i2m1 11219 ax-1ne0 11220 ax-1rid 11221 ax-rnegex 11222 ax-rrecex 11223 ax-cnre 11224 ax-pre-lttri 11225 ax-pre-lttrn 11226 ax-pre-ltadd 11227 ax-pre-mulgt0 11228 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-tr 5258 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6319 df-ord 6385 df-on 6386 df-lim 6387 df-suc 6388 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-om 7884 df-2nd 8011 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-rdg 8446 df-er 8741 df-en 8982 df-dom 8983 df-sdom 8984 df-pnf 11293 df-mnf 11294 df-xr 11295 df-ltxr 11296 df-le 11297 df-sub 11490 df-neg 11491 df-div 11917 df-nn 12263 df-2 12325 df-n0 12523 df-z 12610 df-dvds 16287 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |