Users' Mathboxes Mathbox for Ender Ting < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evenwodadd Structured version   Visualization version   GIF version

Theorem evenwodadd 46865
Description: If an integer is multiplied by its sum with an odd number (thus changing its parity), the result is even. (Contributed by Ender Ting, 30-Apr-2025.)
Hypotheses
Ref Expression
evenwodadd.1 (𝜑𝑖 ∈ ℤ)
evenwodadd.2 (𝜑𝑗 ∈ ℤ)
evenwodadd.3 (𝜑 → ¬ 2 ∥ 𝑗)
Assertion
Ref Expression
evenwodadd (𝜑 → 2 ∥ (𝑖 · (𝑖 + 𝑗)))

Proof of Theorem evenwodadd
StepHypRef Expression
1 2z 12622 . . . 4 2 ∈ ℤ
21a1i 11 . . 3 (𝜑 → 2 ∈ ℤ)
3 evenwodadd.1 . . 3 (𝜑𝑖 ∈ ℤ)
4 evenwodadd.2 . . . 4 (𝜑𝑗 ∈ ℤ)
53, 4zaddcld 12699 . . 3 (𝜑 → (𝑖 + 𝑗) ∈ ℤ)
6 dvdsmultr1 16313 . . 3 ((2 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ (𝑖 + 𝑗) ∈ ℤ) → (2 ∥ 𝑖 → 2 ∥ (𝑖 · (𝑖 + 𝑗))))
72, 3, 5, 6syl3anc 1373 . 2 (𝜑 → (2 ∥ 𝑖 → 2 ∥ (𝑖 · (𝑖 + 𝑗))))
8 evenwodadd.3 . . . 4 (𝜑 → ¬ 2 ∥ 𝑗)
9 4anpull2 1362 . . . . . 6 (((𝑖 ∈ ℤ ∧ ¬ 2 ∥ 𝑖) ∧ (𝑗 ∈ ℤ ∧ ¬ 2 ∥ 𝑗)) ↔ ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ ¬ 2 ∥ 𝑗) ∧ ¬ 2 ∥ 𝑖))
10 opoe 16380 . . . . . 6 (((𝑖 ∈ ℤ ∧ ¬ 2 ∥ 𝑖) ∧ (𝑗 ∈ ℤ ∧ ¬ 2 ∥ 𝑗)) → 2 ∥ (𝑖 + 𝑗))
119, 10sylbir 235 . . . . 5 (((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ ¬ 2 ∥ 𝑗) ∧ ¬ 2 ∥ 𝑖) → 2 ∥ (𝑖 + 𝑗))
1211ex 412 . . . 4 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ ¬ 2 ∥ 𝑗) → (¬ 2 ∥ 𝑖 → 2 ∥ (𝑖 + 𝑗)))
133, 4, 8, 12syl3anc 1373 . . 3 (𝜑 → (¬ 2 ∥ 𝑖 → 2 ∥ (𝑖 + 𝑗)))
14 dvdsmultr2 16315 . . . 4 ((2 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ (𝑖 + 𝑗) ∈ ℤ) → (2 ∥ (𝑖 + 𝑗) → 2 ∥ (𝑖 · (𝑖 + 𝑗))))
152, 3, 5, 14syl3anc 1373 . . 3 (𝜑 → (2 ∥ (𝑖 + 𝑗) → 2 ∥ (𝑖 · (𝑖 + 𝑗))))
1613, 15syld 47 . 2 (𝜑 → (¬ 2 ∥ 𝑖 → 2 ∥ (𝑖 · (𝑖 + 𝑗))))
177, 16pm2.61d 179 1 (𝜑 → 2 ∥ (𝑖 · (𝑖 + 𝑗)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wcel 2108   class class class wbr 5119  (class class class)co 7403   + caddc 11130   · cmul 11132  2c2 12293  cz 12586  cdvds 16270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-n0 12500  df-z 12587  df-dvds 16271
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator