| Metamath
Proof Explorer Theorem List (p. 14 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30937) |
(30938-32460) |
(32461-49324) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | simp33l 1301 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓))) → 𝜑) | ||
| Theorem | simp33r 1302 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓))) → 𝜓) | ||
| Theorem | simp111 1303 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜑) | ||
| Theorem | simp112 1304 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜓) | ||
| Theorem | simp113 1305 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜒) | ||
| Theorem | simp121 1306 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜑) | ||
| Theorem | simp122 1307 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜓) | ||
| Theorem | simp123 1308 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜒) | ||
| Theorem | simp131 1309 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜑) | ||
| Theorem | simp132 1310 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜓) | ||
| Theorem | simp133 1311 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜒) | ||
| Theorem | simp211 1312 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| ⊢ ((𝜂 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜁) → 𝜑) | ||
| Theorem | simp212 1313 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| ⊢ ((𝜂 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜁) → 𝜓) | ||
| Theorem | simp213 1314 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| ⊢ ((𝜂 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜁) → 𝜒) | ||
| Theorem | simp221 1315 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| ⊢ ((𝜂 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜁) → 𝜑) | ||
| Theorem | simp222 1316 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| ⊢ ((𝜂 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜁) → 𝜓) | ||
| Theorem | simp223 1317 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| ⊢ ((𝜂 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜁) → 𝜒) | ||
| Theorem | simp231 1318 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| ⊢ ((𝜂 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜁) → 𝜑) | ||
| Theorem | simp232 1319 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| ⊢ ((𝜂 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜁) → 𝜓) | ||
| Theorem | simp233 1320 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| ⊢ ((𝜂 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜁) → 𝜒) | ||
| Theorem | simp311 1321 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| ⊢ ((𝜂 ∧ 𝜁 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏)) → 𝜑) | ||
| Theorem | simp312 1322 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| ⊢ ((𝜂 ∧ 𝜁 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏)) → 𝜓) | ||
| Theorem | simp313 1323 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| ⊢ ((𝜂 ∧ 𝜁 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏)) → 𝜒) | ||
| Theorem | simp321 1324 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| ⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏)) → 𝜑) | ||
| Theorem | simp322 1325 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| ⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏)) → 𝜓) | ||
| Theorem | simp323 1326 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| ⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏)) → 𝜒) | ||
| Theorem | simp331 1327 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| ⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) | ||
| Theorem | simp332 1328 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| ⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜓) | ||
| Theorem | simp333 1329 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| ⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) | ||
| Theorem | 3anibar 1330 | Remove a hypothesis from the second member of a biconditional. (Contributed by FL, 22-Jul-2008.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ (𝜒 ∧ 𝜏))) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) | ||
| Theorem | 3mix1 1331 | Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.) |
| ⊢ (𝜑 → (𝜑 ∨ 𝜓 ∨ 𝜒)) | ||
| Theorem | 3mix2 1332 | Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.) |
| ⊢ (𝜑 → (𝜓 ∨ 𝜑 ∨ 𝜒)) | ||
| Theorem | 3mix3 1333 | Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.) |
| ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜑)) | ||
| Theorem | 3mix1i 1334 | Introduction in triple disjunction. (Contributed by Mario Carneiro, 6-Oct-2014.) |
| ⊢ 𝜑 ⇒ ⊢ (𝜑 ∨ 𝜓 ∨ 𝜒) | ||
| Theorem | 3mix2i 1335 | Introduction in triple disjunction. (Contributed by Mario Carneiro, 6-Oct-2014.) |
| ⊢ 𝜑 ⇒ ⊢ (𝜓 ∨ 𝜑 ∨ 𝜒) | ||
| Theorem | 3mix3i 1336 | Introduction in triple disjunction. (Contributed by Mario Carneiro, 6-Oct-2014.) |
| ⊢ 𝜑 ⇒ ⊢ (𝜓 ∨ 𝜒 ∨ 𝜑) | ||
| Theorem | 3mix1d 1337 | Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.) |
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜃)) | ||
| Theorem | 3mix2d 1338 | Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.) |
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → (𝜒 ∨ 𝜓 ∨ 𝜃)) | ||
| Theorem | 3mix3d 1339 | Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.) |
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → (𝜒 ∨ 𝜃 ∨ 𝜓)) | ||
| Theorem | 3pm3.2i 1340 | Infer conjunction of premises. (Contributed by NM, 10-Feb-1995.) |
| ⊢ 𝜑 & ⊢ 𝜓 & ⊢ 𝜒 ⇒ ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | ||
| Theorem | pm3.2an3 1341 | Version of pm3.2 469 for a triple conjunction. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by Kyle Wyonch, 24-Apr-2021.) (Proof shortened by Wolf Lammen, 21-Jun-2022.) |
| ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜑 ∧ 𝜓 ∧ 𝜒)))) | ||
| Theorem | mpbir3an 1342 | Detach a conjunction of truths in a biconditional. (Contributed by NM, 16-Sep-2011.) |
| ⊢ 𝜓 & ⊢ 𝜒 & ⊢ 𝜃 & ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) ⇒ ⊢ 𝜑 | ||
| Theorem | mpbir3and 1343 | Detach a conjunction of truths in a biconditional. (Contributed by Mario Carneiro, 11-May-2014.) (Revised by Mario Carneiro, 9-Jan-2015.) |
| ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | syl3anbrc 1344 | Syllogism inference. (Contributed by Mario Carneiro, 11-May-2014.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜏 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) ⇒ ⊢ (𝜑 → 𝜏) | ||
| Theorem | syl21anbrc 1345 | Syllogism inference. (Contributed by Peter Mazsa, 18-Sep-2022.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜏 ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) ⇒ ⊢ (𝜑 → 𝜏) | ||
| Theorem | 3imp3i2an 1346 | An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 13-Apr-2022.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) & ⊢ ((𝜑 ∧ 𝜒) → 𝜏) & ⊢ ((𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜂) | ||
| Theorem | ex3 1347 | Apply ex 412 to a hypothesis with a 3-right-nested conjunction antecedent, with the antecedent of the assertion being a triple conjunction rather than a 2-right-nested conjunction. (Contributed by Alan Sare, 22-Apr-2018.) |
| ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) | ||
| Theorem | 3imp1 1348 | Importation to left triple conjunction. (Contributed by NM, 24-Feb-2005.) |
| ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) ⇒ ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||
| Theorem | 3impd 1349 | Importation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.) |
| ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) | ||
| Theorem | 3imp2 1350 | Importation to right triple conjunction. (Contributed by NM, 26-Oct-2006.) |
| ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | ||
| Theorem | 3impdi 1351 | Importation inference (undistribute conjunction). (Contributed by NM, 14-Aug-1995.) |
| ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
| Theorem | 3impdir 1352 | Importation inference (undistribute conjunction). (Contributed by NM, 20-Aug-1995.) |
| ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜓)) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) | ||
| Theorem | 3exp1 1353 | Exportation from left triple conjunction. (Contributed by NM, 24-Feb-2005.) |
| ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | ||
| Theorem | 3expd 1354 | Exportation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.) |
| ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | ||
| Theorem | 3exp2 1355 | Exportation from right triple conjunction. (Contributed by NM, 26-Oct-2006.) |
| ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | ||
| Theorem | exp5o 1356 | A triple exportation inference. (Contributed by Jeff Hankins, 8-Jul-2009.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → ((𝜃 ∧ 𝜏) → 𝜂)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | ||
| Theorem | exp516 1357 | A triple exportation inference. (Contributed by Jeff Hankins, 8-Jul-2009.) |
| ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | ||
| Theorem | exp520 1358 | A triple exportation inference. (Contributed by Jeff Hankins, 8-Jul-2009.) |
| ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏)) → 𝜂) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | ||
| Theorem | 3impexp 1359 | Version of impexp 450 for a triple conjunction. (Contributed by Alan Sare, 31-Dec-2011.) |
| ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ↔ (𝜑 → (𝜓 → (𝜒 → 𝜃)))) | ||
| Theorem | 3an1rs 1360 | Swap conjuncts. (Contributed by NM, 16-Dec-2007.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
| ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜃) ∧ 𝜒) → 𝜏) | ||
| Theorem | 3anassrs 1361 | Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by Mario Carneiro, 4-Jan-2017.) |
| ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) ⇒ ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||
| Theorem | 4anpull2 1362 | An equivalence of two four-terms conjunctions with the terms regrouped (here, the second sub-conjunct of the first term is pulled separately). (Contributed by Zhi Wang, 4-Sep-2024.) |
| ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒 ∧ 𝜃) ∧ 𝜓)) | ||
| Theorem | ad5ant245 1363 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜏 ∧ 𝜑) ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) → 𝜃) | ||
| Theorem | ad5ant234 1364 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) ∧ 𝜂) → 𝜃) | ||
| Theorem | ad5ant235 1365 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜂) ∧ 𝜒) → 𝜃) | ||
| Theorem | ad5ant123 1366 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜃) | ||
| Theorem | ad5ant124 1367 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜏) ∧ 𝜒) ∧ 𝜂) → 𝜃) | ||
| Theorem | ad5ant125 1368 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜏) ∧ 𝜂) ∧ 𝜒) → 𝜃) | ||
| Theorem | ad5ant134 1369 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜑 ∧ 𝜏) ∧ 𝜓) ∧ 𝜒) ∧ 𝜂) → 𝜃) | ||
| Theorem | ad5ant135 1370 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜑 ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) ∧ 𝜒) → 𝜃) | ||
| Theorem | ad5ant145 1371 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜑 ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) → 𝜃) | ||
| Theorem | ad5ant2345 1372 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) |
| ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (((((𝜂 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||
| Theorem | syl3anc 1373 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜑 → 𝜏) | ||
| Theorem | syl13anc 1374 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏)) → 𝜂) ⇒ ⊢ (𝜑 → 𝜂) | ||
| Theorem | syl31anc 1375 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → 𝜂) | ||
| Theorem | syl112anc 1376 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏)) → 𝜂) ⇒ ⊢ (𝜑 → 𝜂) | ||
| Theorem | syl121anc 1377 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → 𝜂) | ||
| Theorem | syl211anc 1378 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → 𝜂) | ||
| Theorem | syl23anc 1379 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) ⇒ ⊢ (𝜑 → 𝜁) | ||
| Theorem | syl32anc 1380 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂)) → 𝜁) ⇒ ⊢ (𝜑 → 𝜁) | ||
| Theorem | syl122anc 1381 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂)) → 𝜁) ⇒ ⊢ (𝜑 → 𝜁) | ||
| Theorem | syl212anc 1382 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ (𝜏 ∧ 𝜂)) → 𝜁) ⇒ ⊢ (𝜑 → 𝜁) | ||
| Theorem | syl221anc 1383 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜁) ⇒ ⊢ (𝜑 → 𝜁) | ||
| Theorem | syl113anc 1384 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) ⇒ ⊢ (𝜑 → 𝜁) | ||
| Theorem | syl131anc 1385 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜁) ⇒ ⊢ (𝜑 → 𝜁) | ||
| Theorem | syl311anc 1386 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜁) ⇒ ⊢ (𝜑 → 𝜁) | ||
| Theorem | syl33anc 1387 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) ⇒ ⊢ (𝜑 → 𝜎) | ||
| Theorem | syl222anc 1388 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎) ⇒ ⊢ (𝜑 → 𝜎) | ||
| Theorem | syl123anc 1389 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) ⇒ ⊢ (𝜑 → 𝜎) | ||
| Theorem | syl132anc 1390 | Syllogism combined with contraction. (Contributed by NM, 11-Jul-2012.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎) ⇒ ⊢ (𝜑 → 𝜎) | ||
| Theorem | syl213anc 1391 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) ⇒ ⊢ (𝜑 → 𝜎) | ||
| Theorem | syl231anc 1392 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂) ∧ 𝜁) → 𝜎) ⇒ ⊢ (𝜑 → 𝜎) | ||
| Theorem | syl312anc 1393 | Syllogism combined with contraction. (Contributed by NM, 11-Jul-2012.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ (𝜂 ∧ 𝜁)) → 𝜎) ⇒ ⊢ (𝜑 → 𝜎) | ||
| Theorem | syl321anc 1394 | Syllogism combined with contraction. (Contributed by NM, 11-Jul-2012.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ 𝜁) → 𝜎) ⇒ ⊢ (𝜑 → 𝜎) | ||
| Theorem | syl133anc 1395 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (𝜑 → 𝜎) & ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) ⇒ ⊢ (𝜑 → 𝜌) | ||
| Theorem | syl313anc 1396 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (𝜑 → 𝜎) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) ⇒ ⊢ (𝜑 → 𝜌) | ||
| Theorem | syl331anc 1397 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (𝜑 → 𝜎) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁) ∧ 𝜎) → 𝜌) ⇒ ⊢ (𝜑 → 𝜌) | ||
| Theorem | syl223anc 1398 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (𝜑 → 𝜎) & ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) ⇒ ⊢ (𝜑 → 𝜌) | ||
| Theorem | syl232anc 1399 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (𝜑 → 𝜎) & ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎)) → 𝜌) ⇒ ⊢ (𝜑 → 𝜌) | ||
| Theorem | syl322anc 1400 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (𝜑 → 𝜎) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎)) → 𝜌) ⇒ ⊢ (𝜑 → 𝜌) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |