|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 4exdistr | Structured version Visualization version GIF version | ||
| Description: Distribution of existential quantifiers in a quadruple conjunction. (Contributed by NM, 9-Mar-1995.) (Proof shortened by Wolf Lammen, 20-Jan-2018.) | 
| Ref | Expression | 
|---|---|
| 4exdistr | ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ∃𝑥(𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧(𝜒 ∧ ∃𝑤𝜃)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 19.42v 1953 | . . . . 5 ⊢ (∃𝑤(𝜒 ∧ 𝜃) ↔ (𝜒 ∧ ∃𝑤𝜃)) | |
| 2 | 1 | anbi2i 623 | . . . 4 ⊢ (((𝜑 ∧ 𝜓) ∧ ∃𝑤(𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ ∃𝑤𝜃))) | 
| 3 | 19.42v 1953 | . . . 4 ⊢ (∃𝑤((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ ∃𝑤(𝜒 ∧ 𝜃))) | |
| 4 | df-3an 1089 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ ∃𝑤𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ ∃𝑤𝜃))) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | . . 3 ⊢ (∃𝑤((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ (𝜑 ∧ 𝜓 ∧ (𝜒 ∧ ∃𝑤𝜃))) | 
| 6 | 5 | 3exbii 1850 | . 2 ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓 ∧ (𝜒 ∧ ∃𝑤𝜃))) | 
| 7 | 3exdistr 1960 | . 2 ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓 ∧ (𝜒 ∧ ∃𝑤𝜃)) ↔ ∃𝑥(𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧(𝜒 ∧ ∃𝑤𝜃)))) | |
| 8 | 6, 7 | bitri 275 | 1 ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ∃𝑥(𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧(𝜒 ∧ ∃𝑤𝜃)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∃wex 1779 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-ex 1780 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |