Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 4exdistr | Structured version Visualization version GIF version |
Description: Distribution of existential quantifiers in a quadruple conjunction. (Contributed by NM, 9-Mar-1995.) (Proof shortened by Wolf Lammen, 20-Jan-2018.) |
Ref | Expression |
---|---|
4exdistr | ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ∃𝑥(𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧(𝜒 ∧ ∃𝑤𝜃)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.42v 1958 | . . . . 5 ⊢ (∃𝑤(𝜒 ∧ 𝜃) ↔ (𝜒 ∧ ∃𝑤𝜃)) | |
2 | 1 | anbi2i 622 | . . . 4 ⊢ (((𝜑 ∧ 𝜓) ∧ ∃𝑤(𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ ∃𝑤𝜃))) |
3 | 19.42v 1958 | . . . 4 ⊢ (∃𝑤((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ ∃𝑤(𝜒 ∧ 𝜃))) | |
4 | df-3an 1087 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ ∃𝑤𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ ∃𝑤𝜃))) | |
5 | 2, 3, 4 | 3bitr4i 302 | . . 3 ⊢ (∃𝑤((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ (𝜑 ∧ 𝜓 ∧ (𝜒 ∧ ∃𝑤𝜃))) |
6 | 5 | 3exbii 1853 | . 2 ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓 ∧ (𝜒 ∧ ∃𝑤𝜃))) |
7 | 3exdistr 1965 | . 2 ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓 ∧ (𝜒 ∧ ∃𝑤𝜃)) ↔ ∃𝑥(𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧(𝜒 ∧ ∃𝑤𝜃)))) | |
8 | 6, 7 | bitri 274 | 1 ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ∃𝑥(𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧(𝜒 ∧ ∃𝑤𝜃)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-ex 1784 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |