|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 3exdistr | Structured version Visualization version GIF version | ||
| Description: Distribution of existential quantifiers in a triple conjunction. (Contributed by NM, 9-Mar-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) | 
| Ref | Expression | 
|---|---|
| 3exdistr | ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ∃𝑥(𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3anass 1095 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
| 2 | 1 | 2exbii 1849 | . . 3 ⊢ (∃𝑦∃𝑧(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ∃𝑦∃𝑧(𝜑 ∧ (𝜓 ∧ 𝜒))) | 
| 3 | 19.42vv 1957 | . . 3 ⊢ (∃𝑦∃𝑧(𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜑 ∧ ∃𝑦∃𝑧(𝜓 ∧ 𝜒))) | |
| 4 | exdistr 1954 | . . . 4 ⊢ (∃𝑦∃𝑧(𝜓 ∧ 𝜒) ↔ ∃𝑦(𝜓 ∧ ∃𝑧𝜒)) | |
| 5 | 4 | anbi2i 623 | . . 3 ⊢ ((𝜑 ∧ ∃𝑦∃𝑧(𝜓 ∧ 𝜒)) ↔ (𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧𝜒))) | 
| 6 | 2, 3, 5 | 3bitri 297 | . 2 ⊢ (∃𝑦∃𝑧(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧𝜒))) | 
| 7 | 6 | exbii 1848 | 1 ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ∃𝑥(𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧𝜒))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∃wex 1779 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-ex 1780 | 
| This theorem is referenced by: 4exdistr 1961 eloprabga 7542 | 
| Copyright terms: Public domain | W3C validator |