MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3exbii Structured version   Visualization version   GIF version

Theorem 3exbii 1848
Description: Inference adding three existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995.)
Hypothesis
Ref Expression
3exbii.1 (𝜑𝜓)
Assertion
Ref Expression
3exbii (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑥𝑦𝑧𝜓)

Proof of Theorem 3exbii
StepHypRef Expression
1 3exbii.1 . . 3 (𝜑𝜓)
21exbii 1846 . 2 (∃𝑧𝜑 ↔ ∃𝑧𝜓)
322exbii 1847 1 (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑥𝑦𝑧𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-ex 1778
This theorem is referenced by:  4exdistr  1961  ceqsex6v  3551  oprabidw  7479  oprabid  7480  dfoprab2  7508  dftpos3  8285  xpassen  9132  hash3tpb  14544  bnj916  34909  bnj917  34910  bnj983  34927  bnj996  34932  bnj1021  34942  bnj1033  34945  ellines  36116  rnxrn  38354  ichexmpl1  47343
  Copyright terms: Public domain W3C validator