MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3exbii Structured version   Visualization version   GIF version

Theorem 3exbii 1849
Description: Inference adding three existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995.)
Hypothesis
Ref Expression
3exbii.1 (𝜑𝜓)
Assertion
Ref Expression
3exbii (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑥𝑦𝑧𝜓)

Proof of Theorem 3exbii
StepHypRef Expression
1 3exbii.1 . . 3 (𝜑𝜓)
21exbii 1847 . 2 (∃𝑧𝜑 ↔ ∃𝑧𝜓)
322exbii 1848 1 (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑥𝑦𝑧𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wex 1778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808
This theorem depends on definitions:  df-bi 207  df-ex 1779
This theorem is referenced by:  4exdistr  1960  ceqsex6v  3522  oprabidw  7444  oprabid  7445  dfoprab2  7473  dftpos3  8251  xpassen  9088  hash3tpb  14517  bnj916  34922  bnj917  34923  bnj983  34940  bnj996  34945  bnj1021  34955  bnj1033  34958  ellines  36128  rnxrn  38374  ichexmpl1  47429
  Copyright terms: Public domain W3C validator