MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3exbii Structured version   Visualization version   GIF version

Theorem 3exbii 1852
Description: Inference adding three existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995.)
Hypothesis
Ref Expression
3exbii.1 (𝜑𝜓)
Assertion
Ref Expression
3exbii (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑥𝑦𝑧𝜓)

Proof of Theorem 3exbii
StepHypRef Expression
1 3exbii.1 . . 3 (𝜑𝜓)
21exbii 1850 . 2 (∃𝑧𝜑 ↔ ∃𝑧𝜓)
322exbii 1851 1 (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑥𝑦𝑧𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-ex 1783
This theorem is referenced by:  4exdistr  1965  ceqsex6v  3486  oprabidw  7306  oprabid  7307  dfoprab2  7333  dftpos3  8060  xpassen  8853  bnj916  32913  bnj917  32914  bnj983  32931  bnj996  32936  bnj1021  32946  bnj1033  32949  ellines  34454  rnxrn  36524  ichexmpl1  44921
  Copyright terms: Public domain W3C validator