Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3exbii | Structured version Visualization version GIF version |
Description: Inference adding three existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995.) |
Ref | Expression |
---|---|
3exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
3exbii | ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑥∃𝑦∃𝑧𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | exbii 1850 | . 2 ⊢ (∃𝑧𝜑 ↔ ∃𝑧𝜓) |
3 | 2 | 2exbii 1851 | 1 ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑥∃𝑦∃𝑧𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: 4exdistr 1965 ceqsex6v 3486 oprabidw 7306 oprabid 7307 dfoprab2 7333 dftpos3 8060 xpassen 8853 bnj916 32913 bnj917 32914 bnj983 32931 bnj996 32936 bnj1021 32946 bnj1033 32949 ellines 34454 rnxrn 36524 ichexmpl1 44921 |
Copyright terms: Public domain | W3C validator |