MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3exbii Structured version   Visualization version   GIF version

Theorem 3exbii 1850
Description: Inference adding three existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995.)
Hypothesis
Ref Expression
3exbii.1 (𝜑𝜓)
Assertion
Ref Expression
3exbii (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑥𝑦𝑧𝜓)

Proof of Theorem 3exbii
StepHypRef Expression
1 3exbii.1 . . 3 (𝜑𝜓)
21exbii 1848 . 2 (∃𝑧𝜑 ↔ ∃𝑧𝜓)
322exbii 1849 1 (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑥𝑦𝑧𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-ex 1780
This theorem is referenced by:  4exdistr  1961  ceqsex6v  3494  oprabidw  7380  oprabid  7381  dfoprab2  7407  dftpos3  8177  xpassen  8988  hash3tpb  14402  bnj916  34900  bnj917  34901  bnj983  34918  bnj996  34923  bnj1021  34933  bnj1033  34936  ellines  36130  rnxrn  38374  ichexmpl1  47457
  Copyright terms: Public domain W3C validator