| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3exbii | Structured version Visualization version GIF version | ||
| Description: Inference adding three existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995.) |
| Ref | Expression |
|---|---|
| 3exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3exbii | ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑥∃𝑦∃𝑧𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | exbii 1848 | . 2 ⊢ (∃𝑧𝜑 ↔ ∃𝑧𝜓) |
| 3 | 2 | 2exbii 1849 | 1 ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑥∃𝑦∃𝑧𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 4exdistr 1961 ceqsex6v 3514 oprabidw 7425 oprabid 7426 dfoprab2 7454 dftpos3 8232 xpassen 9043 hash3tpb 14470 bnj916 34931 bnj917 34932 bnj983 34949 bnj996 34954 bnj1021 34964 bnj1033 34967 ellines 36137 rnxrn 38383 ichexmpl1 47425 |
| Copyright terms: Public domain | W3C validator |