MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3exbii Structured version   Visualization version   GIF version

Theorem 3exbii 1850
Description: Inference adding three existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995.)
Hypothesis
Ref Expression
3exbii.1 (𝜑𝜓)
Assertion
Ref Expression
3exbii (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑥𝑦𝑧𝜓)

Proof of Theorem 3exbii
StepHypRef Expression
1 3exbii.1 . . 3 (𝜑𝜓)
21exbii 1848 . 2 (∃𝑧𝜑 ↔ ∃𝑧𝜓)
322exbii 1849 1 (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑥𝑦𝑧𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-ex 1780
This theorem is referenced by:  4exdistr  1961  ceqsex6v  3514  oprabidw  7425  oprabid  7426  dfoprab2  7454  dftpos3  8232  xpassen  9043  hash3tpb  14470  bnj916  34931  bnj917  34932  bnj983  34949  bnj996  34954  bnj1021  34964  bnj1033  34967  ellines  36137  rnxrn  38383  ichexmpl1  47425
  Copyright terms: Public domain W3C validator