![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3exbii | Structured version Visualization version GIF version |
Description: Inference adding three existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995.) |
Ref | Expression |
---|---|
3exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
3exbii | ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑥∃𝑦∃𝑧𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | exbii 1846 | . 2 ⊢ (∃𝑧𝜑 ↔ ∃𝑧𝜓) |
3 | 2 | 2exbii 1847 | 1 ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑥∃𝑦∃𝑧𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-ex 1778 |
This theorem is referenced by: 4exdistr 1961 ceqsex6v 3551 oprabidw 7479 oprabid 7480 dfoprab2 7508 dftpos3 8285 xpassen 9132 hash3tpb 14544 bnj916 34909 bnj917 34910 bnj983 34927 bnj996 34932 bnj1021 34942 bnj1033 34945 ellines 36116 rnxrn 38354 ichexmpl1 47343 |
Copyright terms: Public domain | W3C validator |