| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3exbii | Structured version Visualization version GIF version | ||
| Description: Inference adding three existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995.) |
| Ref | Expression |
|---|---|
| 3exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3exbii | ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑥∃𝑦∃𝑧𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | exbii 1848 | . 2 ⊢ (∃𝑧𝜑 ↔ ∃𝑧𝜓) |
| 3 | 2 | 2exbii 1849 | 1 ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑥∃𝑦∃𝑧𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 4exdistr 1961 ceqsex6v 3494 oprabidw 7380 oprabid 7381 dfoprab2 7407 dftpos3 8177 xpassen 8988 hash3tpb 14402 bnj916 34900 bnj917 34901 bnj983 34918 bnj996 34923 bnj1021 34933 bnj1033 34936 ellines 36130 rnxrn 38374 ichexmpl1 47457 |
| Copyright terms: Public domain | W3C validator |