MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3exbii Structured version   Visualization version   GIF version

Theorem 3exbii 1853
Description: Inference adding three existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995.)
Hypothesis
Ref Expression
3exbii.1 (𝜑𝜓)
Assertion
Ref Expression
3exbii (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑥𝑦𝑧𝜓)

Proof of Theorem 3exbii
StepHypRef Expression
1 3exbii.1 . . 3 (𝜑𝜓)
21exbii 1851 . 2 (∃𝑧𝜑 ↔ ∃𝑧𝜓)
322exbii 1852 1 (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑥𝑦𝑧𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-ex 1783
This theorem is referenced by:  4exdistr  1966  ceqsex6v  3534  oprabidw  7440  oprabid  7441  dfoprab2  7467  dftpos3  8229  xpassen  9066  bnj916  33975  bnj917  33976  bnj983  33993  bnj996  33998  bnj1021  34008  bnj1033  34011  ellines  35155  rnxrn  37316  ichexmpl1  46185
  Copyright terms: Public domain W3C validator