Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3exbii | Structured version Visualization version GIF version |
Description: Inference adding three existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995.) |
Ref | Expression |
---|---|
3exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
3exbii | ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑥∃𝑦∃𝑧𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | exbii 1851 | . 2 ⊢ (∃𝑧𝜑 ↔ ∃𝑧𝜓) |
3 | 2 | 2exbii 1852 | 1 ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑥∃𝑦∃𝑧𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: 4exdistr 1966 ceqsex6v 3476 oprabidw 7286 oprabid 7287 dfoprab2 7311 dftpos3 8031 xpassen 8806 bnj916 32813 bnj917 32814 bnj983 32831 bnj996 32836 bnj1021 32846 bnj1033 32849 ellines 34381 rnxrn 36451 ichexmpl1 44809 |
Copyright terms: Public domain | W3C validator |