MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3exbii Structured version   Visualization version   GIF version

Theorem 3exbii 1851
Description: Inference adding three existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995.)
Hypothesis
Ref Expression
3exbii.1 (𝜑𝜓)
Assertion
Ref Expression
3exbii (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑥𝑦𝑧𝜓)

Proof of Theorem 3exbii
StepHypRef Expression
1 3exbii.1 . . 3 (𝜑𝜓)
21exbii 1849 . 2 (∃𝑧𝜑 ↔ ∃𝑧𝜓)
322exbii 1850 1 (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑥𝑦𝑧𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-ex 1781
This theorem is referenced by:  4exdistr  1962  ceqsex6v  3493  oprabidw  7377  oprabid  7378  dfoprab2  7404  dftpos3  8174  xpassen  8984  hash3tpb  14402  bnj916  34945  bnj917  34946  bnj983  34963  bnj996  34968  bnj1021  34978  bnj1033  34981  ellines  36196  rnxrn  38455  ichexmpl1  47579
  Copyright terms: Public domain W3C validator