MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3exbii Structured version   Visualization version   GIF version

Theorem 3exbii 1850
Description: Inference adding three existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995.)
Hypothesis
Ref Expression
3exbii.1 (𝜑𝜓)
Assertion
Ref Expression
3exbii (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑥𝑦𝑧𝜓)

Proof of Theorem 3exbii
StepHypRef Expression
1 3exbii.1 . . 3 (𝜑𝜓)
21exbii 1848 . 2 (∃𝑧𝜑 ↔ ∃𝑧𝜓)
322exbii 1849 1 (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑥𝑦𝑧𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-ex 1780
This theorem is referenced by:  4exdistr  1961  ceqsex6v  3505  oprabidw  7418  oprabid  7419  dfoprab2  7447  dftpos3  8223  xpassen  9035  hash3tpb  14460  bnj916  34923  bnj917  34924  bnj983  34941  bnj996  34946  bnj1021  34956  bnj1033  34959  ellines  36140  rnxrn  38384  ichexmpl1  47470
  Copyright terms: Public domain W3C validator