MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3exbii Structured version   Visualization version   GIF version

Theorem 3exbii 1853
Description: Inference adding three existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995.)
Hypothesis
Ref Expression
3exbii.1 (𝜑𝜓)
Assertion
Ref Expression
3exbii (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑥𝑦𝑧𝜓)

Proof of Theorem 3exbii
StepHypRef Expression
1 3exbii.1 . . 3 (𝜑𝜓)
21exbii 1851 . 2 (∃𝑧𝜑 ↔ ∃𝑧𝜓)
322exbii 1852 1 (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑥𝑦𝑧𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-ex 1784
This theorem is referenced by:  4exdistr  1966  ceqsex6v  3476  oprabidw  7286  oprabid  7287  dfoprab2  7311  dftpos3  8031  xpassen  8806  bnj916  32813  bnj917  32814  bnj983  32831  bnj996  32836  bnj1021  32846  bnj1033  32849  ellines  34381  rnxrn  36451  ichexmpl1  44809
  Copyright terms: Public domain W3C validator