![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3exbii | Structured version Visualization version GIF version |
Description: Inference adding three existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995.) |
Ref | Expression |
---|---|
3exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
3exbii | ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑥∃𝑦∃𝑧𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | exbii 1846 | . 2 ⊢ (∃𝑧𝜑 ↔ ∃𝑧𝜓) |
3 | 2 | 2exbii 1847 | 1 ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑥∃𝑦∃𝑧𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-ex 1778 |
This theorem is referenced by: 4exdistr 1960 ceqsex6v 3540 oprabidw 7466 oprabid 7467 dfoprab2 7495 dftpos3 8274 xpassen 9111 hash3tpb 14537 bnj916 34939 bnj917 34940 bnj983 34957 bnj996 34962 bnj1021 34972 bnj1033 34975 ellines 36146 rnxrn 38392 ichexmpl1 47405 |
Copyright terms: Public domain | W3C validator |