![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3exbii | Structured version Visualization version GIF version |
Description: Inference adding three existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995.) |
Ref | Expression |
---|---|
3exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
3exbii | ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑥∃𝑦∃𝑧𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | exbii 1851 | . 2 ⊢ (∃𝑧𝜑 ↔ ∃𝑧𝜓) |
3 | 2 | 2exbii 1852 | 1 ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑥∃𝑦∃𝑧𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: 4exdistr 1966 ceqsex6v 3534 oprabidw 7440 oprabid 7441 dfoprab2 7467 dftpos3 8229 xpassen 9066 bnj916 33975 bnj917 33976 bnj983 33993 bnj996 33998 bnj1021 34008 bnj1033 34011 ellines 35155 rnxrn 37316 ichexmpl1 46185 |
Copyright terms: Public domain | W3C validator |