| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3exbii | Structured version Visualization version GIF version | ||
| Description: Inference adding three existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995.) |
| Ref | Expression |
|---|---|
| 3exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3exbii | ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑥∃𝑦∃𝑧𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | exbii 1848 | . 2 ⊢ (∃𝑧𝜑 ↔ ∃𝑧𝜓) |
| 3 | 2 | 2exbii 1849 | 1 ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑥∃𝑦∃𝑧𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 4exdistr 1961 ceqsex6v 3502 oprabidw 7400 oprabid 7401 dfoprab2 7427 dftpos3 8200 xpassen 9012 hash3tpb 14436 bnj916 34916 bnj917 34917 bnj983 34934 bnj996 34939 bnj1021 34949 bnj1033 34952 ellines 36133 rnxrn 38377 ichexmpl1 47463 |
| Copyright terms: Public domain | W3C validator |