| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3exbii | Structured version Visualization version GIF version | ||
| Description: Inference adding three existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995.) |
| Ref | Expression |
|---|---|
| 3exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3exbii | ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑥∃𝑦∃𝑧𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | exbii 1848 | . 2 ⊢ (∃𝑧𝜑 ↔ ∃𝑧𝜓) |
| 3 | 2 | 2exbii 1849 | 1 ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑥∃𝑦∃𝑧𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 4exdistr 1961 ceqsex6v 3505 oprabidw 7418 oprabid 7419 dfoprab2 7447 dftpos3 8223 xpassen 9035 hash3tpb 14460 bnj916 34923 bnj917 34924 bnj983 34941 bnj996 34946 bnj1021 34956 bnj1033 34959 ellines 36140 rnxrn 38384 ichexmpl1 47470 |
| Copyright terms: Public domain | W3C validator |