MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3exbii Structured version   Visualization version   GIF version

Theorem 3exbii 1848
Description: Inference adding three existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995.)
Hypothesis
Ref Expression
3exbii.1 (𝜑𝜓)
Assertion
Ref Expression
3exbii (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑥𝑦𝑧𝜓)

Proof of Theorem 3exbii
StepHypRef Expression
1 3exbii.1 . . 3 (𝜑𝜓)
21exbii 1846 . 2 (∃𝑧𝜑 ↔ ∃𝑧𝜓)
322exbii 1847 1 (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑥𝑦𝑧𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-ex 1778
This theorem is referenced by:  4exdistr  1960  ceqsex6v  3540  oprabidw  7466  oprabid  7467  dfoprab2  7495  dftpos3  8274  xpassen  9111  hash3tpb  14537  bnj916  34939  bnj917  34940  bnj983  34957  bnj996  34962  bnj1021  34972  bnj1033  34975  ellines  36146  rnxrn  38392  ichexmpl1  47405
  Copyright terms: Public domain W3C validator