| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.42v | Structured version Visualization version GIF version | ||
| Description: Version of 19.42 2239 with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| 19.42v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.41v 1950 | . 2 ⊢ (∃𝑥(𝜓 ∧ 𝜑) ↔ (∃𝑥𝜓 ∧ 𝜑)) | |
| 2 | exancom 1862 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) | |
| 3 | ancom 460 | . 2 ⊢ ((𝜑 ∧ ∃𝑥𝜓) ↔ (∃𝑥𝜓 ∧ 𝜑)) | |
| 4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 |
| This theorem is referenced by: exdistr 1955 19.42vv 1958 19.42vvv 1960 4exdistr 1962 2sb5 2280 eeeanv 2350 eu6lem 2568 r3ex 3171 rexcom4a 3262 ceqsex2 3489 ceqsex2v 3490 reuind 3707 2reu5lem3 3711 sbccomlemOLD 3816 bm1.3iiOLD 5238 eqvinop 5425 dfid2 5511 dmopabss 5857 dmopab3 5858 dmxp 5868 rnopabss 5894 rnopab3 5895 dmres 5960 ssrnres 6125 mptpreima 6185 resco 6197 mptfnf 6616 brprcneu 6812 brprcneuALT 6813 fndmin 6978 fliftf 7249 dfoprab2 7404 dmoprab 7449 dmoprabss 7450 fnoprabg 7469 uniuni 7695 zfrep6 7887 opabex3d 7897 opabex3rd 7898 opabex3 7899 fsplit 8047 eroveu 8736 ensymfib 9093 rankuni 9756 aceq1 10008 dfac3 10012 kmlem14 10055 kmlem15 10056 axdc2lem 10339 1idpr 10920 ltexprlem1 10927 ltexprlem4 10930 xpcogend 14881 shftdm 14978 joindm 18279 meetdm 18293 toprntopon 22840 ntreq0 22992 cnextf 23981 dmscut 27752 adjeu 31869 rexunirn 32471 fpwrelmapffslem 32715 mxidlnzrb 33445 tgoldbachgt 34676 bnj1019 34791 bnj1209 34808 bnj1033 34981 bnj1189 35021 satfdm 35413 dfiota3 35965 brimg 35979 funpartlem 35986 bj-eeanvw 36757 bj-snsetex 37007 bj-snglc 37013 bj-bm1.3ii 37108 bj-dfid2ALT 37109 bj-restuni 37141 bj-xpcossxp 37233 bj-imdirco 37234 itg2addnc 37724 sbccom2lem 38174 eldmres 38319 rnxrn 38455 coss1cnvres 38529 nnoeomeqom 43415 rp-isfinite6 43621 undmrnresiss 43707 elintima 43756 pm11.58 44493 pm11.71 44500 2sbc5g 44519 iotasbc2 44523 ax6e2nd 44661 ax6e2ndVD 45010 ax6e2ndALT 45032 modelaxreplem3 45083 stoweidlem60 46168 coxp 48943 mofeu 48958 uobffth 49329 uobeqw 49330 elpglem3 49824 |
| Copyright terms: Public domain | W3C validator |