| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.42v | Structured version Visualization version GIF version | ||
| Description: Version of 19.42 2237 with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| 19.42v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.41v 1949 | . 2 ⊢ (∃𝑥(𝜓 ∧ 𝜑) ↔ (∃𝑥𝜓 ∧ 𝜑)) | |
| 2 | exancom 1861 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) | |
| 3 | ancom 460 | . 2 ⊢ ((𝜑 ∧ ∃𝑥𝜓) ↔ (∃𝑥𝜓 ∧ 𝜑)) | |
| 4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: exdistr 1954 19.42vv 1957 19.42vvv 1959 4exdistr 1961 2sb5 2278 eeeanv 2348 eu6lem 2566 r3ex 3176 rexcom4a 3267 cbvrexdva2OLD 3323 ceqsex2 3501 ceqsex2v 3502 reuind 3724 2reu5lem3 3728 sbccomlemOLD 3833 bm1.3iiOLD 5257 eqvinop 5447 dfid2 5535 dmopabss 5882 dmopab3 5883 dmxp 5892 rnopabss 5919 rnopab3 5920 dmres 5983 ssrnres 6151 mptpreima 6211 resco 6223 mptfnf 6653 brprcneu 6848 brprcneuALT 6849 fndmin 7017 fliftf 7290 dfoprab2 7447 dmoprab 7492 dmoprabss 7493 fnoprabg 7512 uniuni 7738 zfrep6 7933 opabex3d 7944 opabex3rd 7945 opabex3 7946 fsplit 8096 eroveu 8785 rexdif1enOLD 9123 ensymfib 9148 rankuni 9816 aceq1 10070 dfac3 10074 kmlem14 10117 kmlem15 10118 axdc2lem 10401 1idpr 10982 ltexprlem1 10989 ltexprlem4 10992 xpcogend 14940 shftdm 15037 joindm 18334 meetdm 18348 toprntopon 22812 ntreq0 22964 cnextf 23953 dmscut 27723 adjeu 31818 rexunirn 32421 fpwrelmapffslem 32655 mxidlnzrb 33451 tgoldbachgt 34654 bnj1019 34769 bnj1209 34786 bnj1033 34959 bnj1189 34999 satfdm 35356 dfiota3 35911 brimg 35925 funpartlem 35930 bj-eeanvw 36701 bj-snsetex 36951 bj-snglc 36957 bj-bm1.3ii 37052 bj-dfid2ALT 37053 bj-restuni 37085 bj-xpcossxp 37177 bj-imdirco 37178 itg2addnc 37668 sbccom2lem 38118 eldmres 38259 rnxrn 38384 coss1cnvres 38408 nnoeomeqom 43301 rp-isfinite6 43507 undmrnresiss 43593 elintima 43642 pm11.58 44379 pm11.71 44386 2sbc5g 44405 iotasbc2 44409 ax6e2nd 44548 ax6e2ndVD 44897 ax6e2ndALT 44919 modelaxreplem3 44970 stoweidlem60 46058 coxp 48821 mofeu 48836 uobffth 49207 uobeqw 49208 elpglem3 49702 |
| Copyright terms: Public domain | W3C validator |