| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.42v | Structured version Visualization version GIF version | ||
| Description: Version of 19.42 2237 with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| 19.42v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.41v 1949 | . 2 ⊢ (∃𝑥(𝜓 ∧ 𝜑) ↔ (∃𝑥𝜓 ∧ 𝜑)) | |
| 2 | exancom 1861 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) | |
| 3 | ancom 460 | . 2 ⊢ ((𝜑 ∧ ∃𝑥𝜓) ↔ (∃𝑥𝜓 ∧ 𝜑)) | |
| 4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: exdistr 1954 19.42vv 1957 19.42vvv 1959 4exdistr 1961 2sb5 2278 eeeanv 2348 eu6lem 2566 r3ex 3168 rexcom4a 3259 ceqsex2 3490 ceqsex2v 3491 reuind 3713 2reu5lem3 3717 sbccomlemOLD 3822 bm1.3iiOLD 5241 eqvinop 5430 dfid2 5516 dmopabss 5861 dmopab3 5862 dmxp 5871 rnopabss 5897 rnopab3 5898 dmres 5963 ssrnres 6127 mptpreima 6187 resco 6199 mptfnf 6617 brprcneu 6812 brprcneuALT 6813 fndmin 6979 fliftf 7252 dfoprab2 7407 dmoprab 7452 dmoprabss 7453 fnoprabg 7472 uniuni 7698 zfrep6 7890 opabex3d 7900 opabex3rd 7901 opabex3 7902 fsplit 8050 eroveu 8739 ensymfib 9098 rankuni 9759 aceq1 10011 dfac3 10015 kmlem14 10058 kmlem15 10059 axdc2lem 10342 1idpr 10923 ltexprlem1 10930 ltexprlem4 10933 xpcogend 14881 shftdm 14978 joindm 18279 meetdm 18293 toprntopon 22810 ntreq0 22962 cnextf 23951 dmscut 27722 adjeu 31833 rexunirn 32436 fpwrelmapffslem 32675 mxidlnzrb 33417 tgoldbachgt 34631 bnj1019 34746 bnj1209 34763 bnj1033 34936 bnj1189 34976 satfdm 35346 dfiota3 35901 brimg 35915 funpartlem 35920 bj-eeanvw 36691 bj-snsetex 36941 bj-snglc 36947 bj-bm1.3ii 37042 bj-dfid2ALT 37043 bj-restuni 37075 bj-xpcossxp 37167 bj-imdirco 37168 itg2addnc 37658 sbccom2lem 38108 eldmres 38249 rnxrn 38374 coss1cnvres 38398 nnoeomeqom 43289 rp-isfinite6 43495 undmrnresiss 43581 elintima 43630 pm11.58 44367 pm11.71 44374 2sbc5g 44393 iotasbc2 44397 ax6e2nd 44536 ax6e2ndVD 44885 ax6e2ndALT 44907 modelaxreplem3 44958 stoweidlem60 46045 coxp 48821 mofeu 48836 uobffth 49207 uobeqw 49208 elpglem3 49702 |
| Copyright terms: Public domain | W3C validator |