| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.42v | Structured version Visualization version GIF version | ||
| Description: Version of 19.42 2237 with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| 19.42v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.41v 1949 | . 2 ⊢ (∃𝑥(𝜓 ∧ 𝜑) ↔ (∃𝑥𝜓 ∧ 𝜑)) | |
| 2 | exancom 1861 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) | |
| 3 | ancom 460 | . 2 ⊢ ((𝜑 ∧ ∃𝑥𝜓) ↔ (∃𝑥𝜓 ∧ 𝜑)) | |
| 4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: exdistr 1954 19.42vv 1957 19.42vvv 1959 4exdistr 1961 2sb5 2279 eeeanv 2352 eu6lem 2573 r3ex 3184 rexcom4a 3277 cbvrexdva2OLD 3333 ceqsex2 3519 ceqsex2v 3520 reuind 3741 2reu5lem3 3745 sbccomlemOLD 3850 bm1.3iiOLD 5277 eqvinop 5467 dfid2 5555 dmopabss 5903 dmopab3 5904 dmxp 5913 rnopabss 5940 rnopab3 5941 dmres 6004 ssrnres 6172 mptpreima 6232 resco 6244 mptfnf 6678 brprcneu 6871 brprcneuALT 6872 fndmin 7040 fliftf 7313 dfoprab2 7470 dmoprab 7515 dmoprabss 7516 fnoprabg 7535 uniuni 7761 zfrep6 7958 opabex3d 7969 opabex3rd 7970 opabex3 7971 fsplit 8121 eroveu 8831 rexdif1enOLD 9178 ensymfib 9203 rankuni 9882 aceq1 10136 dfac3 10140 kmlem14 10183 kmlem15 10184 axdc2lem 10467 1idpr 11048 ltexprlem1 11055 ltexprlem4 11058 xpcogend 14998 shftdm 15095 joindm 18390 meetdm 18404 toprntopon 22868 ntreq0 23020 cnextf 24009 dmscut 27780 adjeu 31875 rexunirn 32478 fpwrelmapffslem 32714 mxidlnzrb 33500 tgoldbachgt 34700 bnj1019 34815 bnj1209 34832 bnj1033 35005 bnj1189 35045 satfdm 35396 dfiota3 35946 brimg 35960 funpartlem 35965 bj-eeanvw 36736 bj-snsetex 36986 bj-snglc 36992 bj-bm1.3ii 37087 bj-dfid2ALT 37088 bj-restuni 37120 bj-xpcossxp 37212 bj-imdirco 37213 itg2addnc 37703 sbccom2lem 38153 eldmres 38293 rnxrn 38421 coss1cnvres 38440 nnoeomeqom 43311 rp-isfinite6 43517 undmrnresiss 43603 elintima 43652 pm11.58 44389 pm11.71 44396 2sbc5g 44415 iotasbc2 44419 ax6e2nd 44558 ax6e2ndVD 44907 ax6e2ndALT 44929 modelaxreplem3 44980 stoweidlem60 46069 coxp 48791 mofeu 48806 elpglem3 49557 |
| Copyright terms: Public domain | W3C validator |