![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.42v | Structured version Visualization version GIF version |
Description: Version of 19.42 2229 with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
19.42v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.41v 1953 | . 2 ⊢ (∃𝑥(𝜓 ∧ 𝜑) ↔ (∃𝑥𝜓 ∧ 𝜑)) | |
2 | exancom 1864 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) | |
3 | ancom 461 | . 2 ⊢ ((𝜑 ∧ ∃𝑥𝜓) ↔ (∃𝑥𝜓 ∧ 𝜑)) | |
4 | 1, 2, 3 | 3bitr4i 302 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 |
This theorem is referenced by: exdistr 1958 19.42vv 1961 19.42vvv 1963 4exdistr 1965 2sb5 2271 eeeanv 2346 eu6lem 2567 rexcom4a 3289 cbvrexdva2OLD 3346 ceqsex2 3529 ceqsex2v 3530 reuind 3749 2reu5lem3 3753 sbccomlem 3864 bm1.3ii 5302 eqvinop 5487 dfid2 5576 dmopabss 5918 dmopab3 5919 dmres 6003 ssrnres 6177 mptpreima 6237 resco 6249 mptfnf 6685 brprcneu 6881 brprcneuALT 6882 fndmin 7046 fliftf 7314 dfoprab2 7469 dmoprab 7512 dmoprabss 7513 fnoprabg 7533 uniuni 7751 zfrep6 7943 opabex3d 7954 opabex3rd 7955 opabex3 7956 fsplit 8105 eroveu 8808 rexdif1enOLD 9161 ensymfib 9189 rankuni 9860 aceq1 10114 dfac3 10118 kmlem14 10160 kmlem15 10161 axdc2lem 10445 1idpr 11026 ltexprlem1 11033 ltexprlem4 11036 xpcogend 14925 shftdm 15022 joindm 18332 meetdm 18346 toprntopon 22647 ntreq0 22801 cnextf 23790 dmscut 27537 adjeu 31397 rexunirn 31987 fpwrelmapffslem 32212 mxidlnzrb 32857 tgoldbachgt 33961 bnj1019 34076 bnj1209 34093 bnj1033 34266 bnj1189 34306 satfdm 34646 dfiota3 35187 brimg 35201 funpartlem 35206 bj-eeanvw 35894 bj-snsetex 36147 bj-snglc 36153 bj-bm1.3ii 36248 bj-dfid2ALT 36249 bj-restuni 36281 bj-xpcossxp 36373 bj-imdirco 36374 itg2addnc 36845 sbccom2lem 37295 eldmres 37441 rnxrn 37571 coss1cnvres 37590 nnoeomeqom 42364 rp-isfinite6 42571 undmrnresiss 42657 elintima 42706 pm11.58 43451 pm11.71 43458 2sbc5g 43477 iotasbc2 43481 ax6e2nd 43621 ax6e2ndVD 43971 ax6e2ndALT 43993 stoweidlem60 45075 mofeu 47602 elpglem3 47846 |
Copyright terms: Public domain | W3C validator |