Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.42v | Structured version Visualization version GIF version |
Description: Version of 19.42 2232 with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
19.42v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.41v 1954 | . 2 ⊢ (∃𝑥(𝜓 ∧ 𝜑) ↔ (∃𝑥𝜓 ∧ 𝜑)) | |
2 | exancom 1865 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) | |
3 | ancom 460 | . 2 ⊢ ((𝜑 ∧ ∃𝑥𝜓) ↔ (∃𝑥𝜓 ∧ 𝜑)) | |
4 | 1, 2, 3 | 3bitr4i 302 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: exdistr 1959 19.42vv 1962 19.42vvv 1964 4exdistr 1966 2sb5 2275 eeeanv 2350 eu6lem 2573 rexcom4a 3181 cbvrexdva2 3382 ceqsex2 3472 ceqsex2v 3473 reuind 3683 2reu5lem3 3687 sbccomlem 3799 bm1.3ii 5221 eqvinop 5395 dfid2 5482 dmopabss 5816 dmopab3 5817 dmres 5902 ssrnres 6070 mptpreima 6130 resco 6143 mptfnf 6552 brprcneu 6747 fvprc 6748 fndmin 6904 fliftf 7166 dfoprab2 7311 dmoprab 7354 dmoprabss 7355 fnoprabg 7375 uniuni 7590 zfrep6 7771 opabex3d 7781 opabex3rd 7782 opabex3 7783 fsplit 7928 fsplitOLD 7929 eroveu 8559 rexdif1en 8906 ensymfib 8930 rankuni 9552 aceq1 9804 dfac3 9808 kmlem14 9850 kmlem15 9851 axdc2lem 10135 1idpr 10716 ltexprlem1 10723 ltexprlem4 10726 xpcogend 14613 shftdm 14710 joindm 18008 meetdm 18022 toprntopon 21982 ntreq0 22136 cnextf 23125 adjeu 30152 rexunirn 30741 fpwrelmapffslem 30969 mxidlnzrb 31546 tgoldbachgt 32543 bnj1019 32659 bnj1209 32676 bnj1033 32849 bnj1189 32889 satfdm 33231 dmscut 33932 dfiota3 34152 brimg 34166 funpartlem 34171 bj-eeanvw 34822 bj-snsetex 35080 bj-snglc 35086 bj-bm1.3ii 35162 bj-dfid2ALT 35163 bj-restuni 35195 bj-xpcossxp 35287 bj-imdirco 35288 itg2addnc 35758 sbccom2lem 36209 eldmres 36335 rnxrn 36451 rp-isfinite6 41023 undmrnresiss 41101 elintima 41150 pm11.58 41897 pm11.71 41904 2sbc5g 41923 iotasbc2 41927 ax6e2nd 42067 ax6e2ndVD 42417 ax6e2ndALT 42439 stoweidlem60 43491 mofeu 46063 elpglem3 46304 |
Copyright terms: Public domain | W3C validator |