| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.42v | Structured version Visualization version GIF version | ||
| Description: Version of 19.42 2237 with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| 19.42v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.41v 1949 | . 2 ⊢ (∃𝑥(𝜓 ∧ 𝜑) ↔ (∃𝑥𝜓 ∧ 𝜑)) | |
| 2 | exancom 1861 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) | |
| 3 | ancom 460 | . 2 ⊢ ((𝜑 ∧ ∃𝑥𝜓) ↔ (∃𝑥𝜓 ∧ 𝜑)) | |
| 4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: exdistr 1954 19.42vv 1957 19.42vvv 1959 4exdistr 1961 2sb5 2278 eeeanv 2348 eu6lem 2566 r3ex 3174 rexcom4a 3265 cbvrexdva2OLD 3320 ceqsex2 3498 ceqsex2v 3499 reuind 3721 2reu5lem3 3725 sbccomlemOLD 3830 bm1.3iiOLD 5252 eqvinop 5442 dfid2 5528 dmopabss 5872 dmopab3 5873 dmxp 5882 rnopabss 5908 rnopab3 5909 dmres 5972 ssrnres 6139 mptpreima 6199 resco 6211 mptfnf 6635 brprcneu 6830 brprcneuALT 6831 fndmin 6999 fliftf 7272 dfoprab2 7427 dmoprab 7472 dmoprabss 7473 fnoprabg 7492 uniuni 7718 zfrep6 7913 opabex3d 7923 opabex3rd 7924 opabex3 7925 fsplit 8073 eroveu 8762 rexdif1enOLD 9100 ensymfib 9125 rankuni 9792 aceq1 10046 dfac3 10050 kmlem14 10093 kmlem15 10094 axdc2lem 10377 1idpr 10958 ltexprlem1 10965 ltexprlem4 10968 xpcogend 14916 shftdm 15013 joindm 18314 meetdm 18328 toprntopon 22845 ntreq0 22997 cnextf 23986 dmscut 27757 adjeu 31868 rexunirn 32471 fpwrelmapffslem 32705 mxidlnzrb 33444 tgoldbachgt 34647 bnj1019 34762 bnj1209 34779 bnj1033 34952 bnj1189 34992 satfdm 35349 dfiota3 35904 brimg 35918 funpartlem 35923 bj-eeanvw 36694 bj-snsetex 36944 bj-snglc 36950 bj-bm1.3ii 37045 bj-dfid2ALT 37046 bj-restuni 37078 bj-xpcossxp 37170 bj-imdirco 37171 itg2addnc 37661 sbccom2lem 38111 eldmres 38252 rnxrn 38377 coss1cnvres 38401 nnoeomeqom 43294 rp-isfinite6 43500 undmrnresiss 43586 elintima 43635 pm11.58 44372 pm11.71 44379 2sbc5g 44398 iotasbc2 44402 ax6e2nd 44541 ax6e2ndVD 44890 ax6e2ndALT 44912 modelaxreplem3 44963 stoweidlem60 46051 coxp 48814 mofeu 48829 uobffth 49200 uobeqw 49201 elpglem3 49695 |
| Copyright terms: Public domain | W3C validator |