![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.42v | Structured version Visualization version GIF version |
Description: Version of 19.42 2233 with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
19.42v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.41v 1946 | . 2 ⊢ (∃𝑥(𝜓 ∧ 𝜑) ↔ (∃𝑥𝜓 ∧ 𝜑)) | |
2 | exancom 1858 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) | |
3 | ancom 460 | . 2 ⊢ ((𝜑 ∧ ∃𝑥𝜓) ↔ (∃𝑥𝜓 ∧ 𝜑)) | |
4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 |
This theorem is referenced by: exdistr 1951 19.42vv 1954 19.42vvv 1956 4exdistr 1958 2sb5 2275 eeeanv 2350 eu6lem 2570 r3ex 3195 rexcom4a 3289 cbvrexdva2OLD 3347 ceqsex2 3534 ceqsex2v 3535 reuind 3761 2reu5lem3 3765 sbccomlemOLD 3878 bm1.3iiOLD 5307 eqvinop 5497 dfid2 5584 dmopabss 5931 dmopab3 5932 dmxp 5941 rnopabss 5968 rnopab3 5969 dmres 6031 ssrnres 6199 mptpreima 6259 resco 6271 mptfnf 6703 brprcneu 6896 brprcneuALT 6897 fndmin 7064 fliftf 7334 dfoprab2 7490 dmoprab 7534 dmoprabss 7535 fnoprabg 7555 uniuni 7780 zfrep6 7977 opabex3d 7988 opabex3rd 7989 opabex3 7990 fsplit 8140 eroveu 8850 rexdif1enOLD 9197 ensymfib 9221 rankuni 9900 aceq1 10154 dfac3 10158 kmlem14 10201 kmlem15 10202 axdc2lem 10485 1idpr 11066 ltexprlem1 11073 ltexprlem4 11076 xpcogend 15009 shftdm 15106 joindm 18432 meetdm 18446 toprntopon 22946 ntreq0 23100 cnextf 24089 dmscut 27870 adjeu 31917 rexunirn 32519 fpwrelmapffslem 32749 mxidlnzrb 33487 tgoldbachgt 34656 bnj1019 34771 bnj1209 34788 bnj1033 34961 bnj1189 35001 satfdm 35353 dfiota3 35904 brimg 35918 funpartlem 35923 bj-eeanvw 36695 bj-snsetex 36945 bj-snglc 36951 bj-bm1.3ii 37046 bj-dfid2ALT 37047 bj-restuni 37079 bj-xpcossxp 37171 bj-imdirco 37172 itg2addnc 37660 sbccom2lem 38110 eldmres 38251 rnxrn 38379 coss1cnvres 38398 nnoeomeqom 43301 rp-isfinite6 43507 undmrnresiss 43593 elintima 43642 pm11.58 44385 pm11.71 44392 2sbc5g 44411 iotasbc2 44415 ax6e2nd 44555 ax6e2ndVD 44905 ax6e2ndALT 44927 modelaxreplem3 44944 stoweidlem60 46015 mofeu 48677 elpglem3 48943 |
Copyright terms: Public domain | W3C validator |