![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.42v | Structured version Visualization version GIF version |
Description: Version of 19.42 2237 with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
19.42v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.41v 1949 | . 2 ⊢ (∃𝑥(𝜓 ∧ 𝜑) ↔ (∃𝑥𝜓 ∧ 𝜑)) | |
2 | exancom 1860 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) | |
3 | ancom 460 | . 2 ⊢ ((𝜑 ∧ ∃𝑥𝜓) ↔ (∃𝑥𝜓 ∧ 𝜑)) | |
4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 |
This theorem is referenced by: exdistr 1954 19.42vv 1957 19.42vvv 1959 4exdistr 1961 2sb5 2281 eeeanv 2356 eu6lem 2576 r3ex 3204 rexcom4a 3298 cbvrexdva2OLD 3358 ceqsex2 3547 ceqsex2v 3548 reuind 3775 2reu5lem3 3779 sbccomlemOLD 3892 bm1.3ii 5320 eqvinop 5507 dfid2 5595 dmopabss 5943 dmopab3 5944 dmxp 5953 dmres 6041 ssrnres 6209 mptpreima 6269 resco 6281 mptfnf 6715 brprcneu 6910 brprcneuALT 6911 fndmin 7078 fliftf 7351 dfoprab2 7508 dmoprab 7552 dmoprabss 7553 fnoprabg 7573 uniuni 7797 zfrep6 7995 opabex3d 8006 opabex3rd 8007 opabex3 8008 fsplit 8158 eroveu 8870 rexdif1enOLD 9225 ensymfib 9250 rankuni 9932 aceq1 10186 dfac3 10190 kmlem14 10233 kmlem15 10234 axdc2lem 10517 1idpr 11098 ltexprlem1 11105 ltexprlem4 11108 xpcogend 15023 shftdm 15120 joindm 18445 meetdm 18459 toprntopon 22952 ntreq0 23106 cnextf 24095 dmscut 27874 adjeu 31921 rexunirn 32520 fpwrelmapffslem 32746 mxidlnzrb 33473 tgoldbachgt 34640 bnj1019 34755 bnj1209 34772 bnj1033 34945 bnj1189 34985 satfdm 35337 dfiota3 35887 brimg 35901 funpartlem 35906 bj-eeanvw 36679 bj-snsetex 36929 bj-snglc 36935 bj-bm1.3ii 37030 bj-dfid2ALT 37031 bj-restuni 37063 bj-xpcossxp 37155 bj-imdirco 37156 itg2addnc 37634 sbccom2lem 38084 eldmres 38226 rnxrn 38354 coss1cnvres 38373 nnoeomeqom 43274 rp-isfinite6 43480 undmrnresiss 43566 elintima 43615 pm11.58 44359 pm11.71 44366 2sbc5g 44385 iotasbc2 44389 ax6e2nd 44529 ax6e2ndVD 44879 ax6e2ndALT 44901 stoweidlem60 45981 mofeu 48561 elpglem3 48805 |
Copyright terms: Public domain | W3C validator |