MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad10antr Structured version   Visualization version   GIF version

Theorem ad10antr 743
Description: Deduction adding 10 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.)
Hypothesis
Ref Expression
ad2ant.1 (𝜑𝜓)
Assertion
Ref Expression
ad10antr (((((((((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) ∧ 𝜅) → 𝜓)

Proof of Theorem ad10antr
StepHypRef Expression
1 ad2ant.1 . . 3 (𝜑𝜓)
21adantr 484 . 2 ((𝜑𝜒) → 𝜓)
32ad9antr 741 1 (((((((((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) ∧ 𝜅) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400
This theorem is referenced by:  simp-10l  794  simp-11l  796  simp-11r  797  footexALT  26510  footex  26513  lnopp2hpgb  26555
  Copyright terms: Public domain W3C validator