| Step | Hyp | Ref
| Expression |
| 1 | | qsdrng.q |
. . . 4
⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀)) |
| 2 | | eqid 2736 |
. . . 4
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 3 | | qsdrng.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ NzRing) |
| 4 | | nzrring 20481 |
. . . . 5
⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
| 5 | 3, 4 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 6 | | qsdrngi.1 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑅)) |
| 7 | 2 | mxidlidl 33483 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (LIdeal‘𝑅)) |
| 8 | 5, 6, 7 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ (LIdeal‘𝑅)) |
| 9 | | qsdrng.0 |
. . . . . . . . 9
⊢ 𝑂 =
(oppr‘𝑅) |
| 10 | 9 | opprring 20312 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑂 ∈ Ring) |
| 11 | 5, 10 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑂 ∈ Ring) |
| 12 | | qsdrngi.2 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑂)) |
| 13 | | eqid 2736 |
. . . . . . . 8
⊢
(Base‘𝑂) =
(Base‘𝑂) |
| 14 | 13 | mxidlidl 33483 |
. . . . . . 7
⊢ ((𝑂 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑂)) → 𝑀 ∈ (LIdeal‘𝑂)) |
| 15 | 11, 12, 14 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ (LIdeal‘𝑂)) |
| 16 | 8, 15 | elind 4180 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ((LIdeal‘𝑅) ∩ (LIdeal‘𝑂))) |
| 17 | | eqid 2736 |
. . . . . 6
⊢
(LIdeal‘𝑅) =
(LIdeal‘𝑅) |
| 18 | | eqid 2736 |
. . . . . 6
⊢
(LIdeal‘𝑂) =
(LIdeal‘𝑂) |
| 19 | | eqid 2736 |
. . . . . 6
⊢
(2Ideal‘𝑅) =
(2Ideal‘𝑅) |
| 20 | 17, 9, 18, 19 | 2idlval 21217 |
. . . . 5
⊢
(2Ideal‘𝑅) =
((LIdeal‘𝑅) ∩
(LIdeal‘𝑂)) |
| 21 | 16, 20 | eleqtrrdi 2846 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ (2Ideal‘𝑅)) |
| 22 | 2 | mxidlnr 33484 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ≠ (Base‘𝑅)) |
| 23 | 5, 6, 22 | syl2anc 584 |
. . . 4
⊢ (𝜑 → 𝑀 ≠ (Base‘𝑅)) |
| 24 | 1, 2, 5, 3, 21, 23 | qsnzr 33475 |
. . 3
⊢ (𝜑 → 𝑄 ∈ NzRing) |
| 25 | | eqid 2736 |
. . . 4
⊢
(1r‘𝑄) = (1r‘𝑄) |
| 26 | | eqid 2736 |
. . . 4
⊢
(0g‘𝑄) = (0g‘𝑄) |
| 27 | 25, 26 | nzrnz 20480 |
. . 3
⊢ (𝑄 ∈ NzRing →
(1r‘𝑄)
≠ (0g‘𝑄)) |
| 28 | 24, 27 | syl 17 |
. 2
⊢ (𝜑 → (1r‘𝑄) ≠
(0g‘𝑄)) |
| 29 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝑄) =
(Base‘𝑄) |
| 30 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢
(.r‘𝑄) = (.r‘𝑄) |
| 31 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢
(Unit‘𝑄) =
(Unit‘𝑄) |
| 32 | 1, 19 | qusring 21241 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (2Ideal‘𝑅)) → 𝑄 ∈ Ring) |
| 33 | 5, 21, 32 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑄 ∈ Ring) |
| 34 | 33 | ad10antr 744 |
. . . . . . . . . . . . . . 15
⊢
(((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) → 𝑄 ∈ Ring) |
| 35 | 34 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
((((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → 𝑄 ∈ Ring) |
| 36 | | eldifi 4111 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)})
→ 𝑢 ∈
(Base‘𝑄)) |
| 37 | 36 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖ {(0g‘𝑄)})) → 𝑢 ∈ (Base‘𝑄)) |
| 38 | 37 | ad10antr 744 |
. . . . . . . . . . . . . 14
⊢
((((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → 𝑢 ∈ (Base‘𝑄)) |
| 39 | | ovex 7443 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ~QG 𝑀) ∈ V |
| 40 | 39 | ecelqsi 8792 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 ∈ (Base‘𝑅) → [𝑟](𝑅 ~QG 𝑀) ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑀))) |
| 41 | 40 | ad4antlr 733 |
. . . . . . . . . . . . . . 15
⊢
((((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → [𝑟](𝑅 ~QG 𝑀) ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑀))) |
| 42 | 1 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀))) |
| 43 | | eqidd 2737 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (Base‘𝑅) = (Base‘𝑅)) |
| 44 | | ovexd 7445 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑅 ~QG 𝑀) ∈ V) |
| 45 | 42, 43, 44, 3 | qusbas 17564 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((Base‘𝑅) / (𝑅 ~QG 𝑀)) = (Base‘𝑄)) |
| 46 | 45 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖ {(0g‘𝑄)})) → ((Base‘𝑅) / (𝑅 ~QG 𝑀)) = (Base‘𝑄)) |
| 47 | 46 | ad10antr 744 |
. . . . . . . . . . . . . . 15
⊢
((((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → ((Base‘𝑅) / (𝑅 ~QG 𝑀)) = (Base‘𝑄)) |
| 48 | 41, 47 | eleqtrd 2837 |
. . . . . . . . . . . . . 14
⊢
((((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → [𝑟](𝑅 ~QG 𝑀) ∈ (Base‘𝑄)) |
| 49 | 39 | ecelqsi 8792 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ (Base‘𝑅) → [𝑠](𝑅 ~QG 𝑀) ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑀))) |
| 50 | 49 | ad2antlr 727 |
. . . . . . . . . . . . . . 15
⊢
((((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → [𝑠](𝑅 ~QG 𝑀) ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑀))) |
| 51 | 50, 47 | eleqtrd 2837 |
. . . . . . . . . . . . . 14
⊢
((((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → [𝑠](𝑅 ~QG 𝑀) ∈ (Base‘𝑄)) |
| 52 | | simpllr 775 |
. . . . . . . . . . . . . . . 16
⊢
((((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → 𝑣 = [𝑟](𝑅 ~QG 𝑀)) |
| 53 | | simp-9r 793 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → 𝑢 = [𝑥](𝑅 ~QG 𝑀)) |
| 54 | 53 | eqcomd 2742 |
. . . . . . . . . . . . . . . 16
⊢
((((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → [𝑥](𝑅 ~QG 𝑀) = 𝑢) |
| 55 | 52, 54 | oveq12d 7428 |
. . . . . . . . . . . . . . 15
⊢
((((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = ([𝑟](𝑅 ~QG 𝑀)(.r‘𝑄)𝑢)) |
| 56 | | simp-7r 789 |
. . . . . . . . . . . . . . 15
⊢
((((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) |
| 57 | 55, 56 | eqtr3d 2773 |
. . . . . . . . . . . . . 14
⊢
((((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → ([𝑟](𝑅 ~QG 𝑀)(.r‘𝑄)𝑢) = (1r‘𝑄)) |
| 58 | | eqid 2736 |
. . . . . . . . . . . . . . . 16
⊢
(oppr‘𝑄) = (oppr‘𝑄) |
| 59 | | eqid 2736 |
. . . . . . . . . . . . . . . 16
⊢
(.r‘(oppr‘𝑄)) =
(.r‘(oppr‘𝑄)) |
| 60 | 29, 30, 58, 59 | opprmul 20305 |
. . . . . . . . . . . . . . 15
⊢ ([𝑠](𝑅 ~QG 𝑀)(.r‘(oppr‘𝑄))𝑢) = (𝑢(.r‘𝑄)[𝑠](𝑅
~QG 𝑀)) |
| 61 | | simp-5r 785 |
. . . . . . . . . . . . . . . 16
⊢
((((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) |
| 62 | 5 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖ {(0g‘𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) → 𝑅 ∈ Ring) |
| 63 | 62 | ad8antr 740 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → 𝑅 ∈ Ring) |
| 64 | 21 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖ {(0g‘𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) → 𝑀 ∈ (2Ideal‘𝑅)) |
| 65 | 64 | ad8antr 740 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → 𝑀 ∈ (2Ideal‘𝑅)) |
| 66 | 2, 9, 1, 63, 65, 29, 51, 38 | opprqusmulr 33511 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → ([𝑠](𝑅 ~QG 𝑀)(.r‘(oppr‘𝑄))𝑢) = ([𝑠](𝑅
~QG 𝑀)(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))𝑢)) |
| 67 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → 𝑤 = [𝑠](𝑅 ~QG 𝑀)) |
| 68 | 2, 17 | lidlss 21178 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑀 ∈ (LIdeal‘𝑅) → 𝑀 ⊆ (Base‘𝑅)) |
| 69 | 8, 68 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑀 ⊆ (Base‘𝑅)) |
| 70 | 9, 2 | oppreqg 33503 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ⊆ (Base‘𝑅)) → (𝑅 ~QG 𝑀) = (𝑂 ~QG 𝑀)) |
| 71 | 5, 69, 70 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑅 ~QG 𝑀) = (𝑂 ~QG 𝑀)) |
| 72 | 71 | ad10antr 744 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) → (𝑅 ~QG 𝑀) = (𝑂 ~QG 𝑀)) |
| 73 | 72 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → (𝑅 ~QG 𝑀) = (𝑂 ~QG 𝑀)) |
| 74 | 73 | eceq2d 8767 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → [𝑥](𝑅 ~QG 𝑀) = [𝑥](𝑂 ~QG 𝑀)) |
| 75 | 53, 74 | eqtr2d 2772 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → [𝑥](𝑂 ~QG 𝑀) = 𝑢) |
| 76 | 67, 75 | oveq12d 7428 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = ([𝑠](𝑅 ~QG 𝑀)(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))𝑢)) |
| 77 | 66, 76 | eqtr4d 2774 |
. . . . . . . . . . . . . . . 16
⊢
((((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → ([𝑠](𝑅 ~QG 𝑀)(.r‘(oppr‘𝑄))𝑢) = (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂
~QG 𝑀))) |
| 78 | 58, 25 | oppr1 20315 |
. . . . . . . . . . . . . . . . . . 19
⊢
(1r‘𝑄) =
(1r‘(oppr‘𝑄)) |
| 79 | 2, 9, 1, 5, 21 | opprqus1r 33512 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 →
(1r‘(oppr‘𝑄)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) |
| 80 | 78, 79 | eqtrid 2783 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (1r‘𝑄) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) |
| 81 | 80 | ad10antr 744 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) → (1r‘𝑄) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) |
| 82 | 81 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
((((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → (1r‘𝑄) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) |
| 83 | 61, 77, 82 | 3eqtr4d 2781 |
. . . . . . . . . . . . . . 15
⊢
((((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → ([𝑠](𝑅 ~QG 𝑀)(.r‘(oppr‘𝑄))𝑢) = (1r‘𝑄)) |
| 84 | 60, 83 | eqtr3id 2785 |
. . . . . . . . . . . . . 14
⊢
((((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → (𝑢(.r‘𝑄)[𝑠](𝑅 ~QG 𝑀)) = (1r‘𝑄)) |
| 85 | 29, 26, 25, 30, 31, 35, 38, 48, 51, 57, 84 | ringinveu 33293 |
. . . . . . . . . . . . 13
⊢
((((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → [𝑠](𝑅 ~QG 𝑀) = [𝑟](𝑅 ~QG 𝑀)) |
| 86 | 85, 67, 52 | 3eqtr4rd 2782 |
. . . . . . . . . . . 12
⊢
((((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → 𝑣 = 𝑤) |
| 87 | 86 | oveq2d 7426 |
. . . . . . . . . . 11
⊢
((((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → (𝑢(.r‘𝑄)𝑣) = (𝑢(.r‘𝑄)𝑤)) |
| 88 | 67 | oveq2d 7426 |
. . . . . . . . . . 11
⊢
((((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → (𝑢(.r‘𝑄)𝑤) = (𝑢(.r‘𝑄)[𝑠](𝑅 ~QG 𝑀))) |
| 89 | 87, 88, 84 | 3eqtrd 2775 |
. . . . . . . . . 10
⊢
((((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → (𝑢(.r‘𝑄)𝑣) = (1r‘𝑄)) |
| 90 | | simp-4r 783 |
. . . . . . . . . . . 12
⊢
((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) → 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) |
| 91 | 71 | qseq2d 8784 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((Base‘𝑅) / (𝑅 ~QG 𝑀)) = ((Base‘𝑅) / (𝑂 ~QG 𝑀))) |
| 92 | 91 | ad9antr 742 |
. . . . . . . . . . . . 13
⊢
((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) → ((Base‘𝑅) / (𝑅 ~QG 𝑀)) = ((Base‘𝑅) / (𝑂 ~QG 𝑀))) |
| 93 | | eqidd 2737 |
. . . . . . . . . . . . . 14
⊢
((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) → (𝑂 /s (𝑂 ~QG 𝑀)) = (𝑂 /s (𝑂 ~QG 𝑀))) |
| 94 | 9, 2 | opprbas 20308 |
. . . . . . . . . . . . . . 15
⊢
(Base‘𝑅) =
(Base‘𝑂) |
| 95 | 94 | a1i 11 |
. . . . . . . . . . . . . 14
⊢
((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) → (Base‘𝑅) = (Base‘𝑂)) |
| 96 | | ovexd 7445 |
. . . . . . . . . . . . . 14
⊢
((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) → (𝑂 ~QG 𝑀) ∈ V) |
| 97 | 9 | fvexi 6895 |
. . . . . . . . . . . . . . 15
⊢ 𝑂 ∈ V |
| 98 | 97 | a1i 11 |
. . . . . . . . . . . . . 14
⊢
((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) → 𝑂 ∈ V) |
| 99 | 93, 95, 96, 98 | qusbas 17564 |
. . . . . . . . . . . . 13
⊢
((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) → ((Base‘𝑅) / (𝑂 ~QG 𝑀)) = (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) |
| 100 | 92, 99 | eqtr2d 2772 |
. . . . . . . . . . . 12
⊢
((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) → (Base‘(𝑂 /s (𝑂 ~QG 𝑀))) = ((Base‘𝑅) / (𝑅 ~QG 𝑀))) |
| 101 | 90, 100 | eleqtrd 2837 |
. . . . . . . . . . 11
⊢
((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) → 𝑤 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑀))) |
| 102 | | elqsi 8789 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑀)) → ∃𝑠 ∈ (Base‘𝑅)𝑤 = [𝑠](𝑅 ~QG 𝑀)) |
| 103 | 101, 102 | syl 17 |
. . . . . . . . . 10
⊢
((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) → ∃𝑠 ∈ (Base‘𝑅)𝑤 = [𝑠](𝑅 ~QG 𝑀)) |
| 104 | 89, 103 | r19.29a 3149 |
. . . . . . . . 9
⊢
((((((((((𝜑 ∧
𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) → (𝑢(.r‘𝑄)𝑣) = (1r‘𝑄)) |
| 105 | | simp-4r 783 |
. . . . . . . . . . 11
⊢
((((((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) → 𝑣 ∈ (Base‘𝑄)) |
| 106 | 46 | ad6antr 736 |
. . . . . . . . . . 11
⊢
((((((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) → ((Base‘𝑅) / (𝑅 ~QG 𝑀)) = (Base‘𝑄)) |
| 107 | 105, 106 | eleqtrrd 2838 |
. . . . . . . . . 10
⊢
((((((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) → 𝑣 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑀))) |
| 108 | | elqsi 8789 |
. . . . . . . . . 10
⊢ (𝑣 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑀)) → ∃𝑟 ∈ (Base‘𝑅)𝑣 = [𝑟](𝑅 ~QG 𝑀)) |
| 109 | 107, 108 | syl 17 |
. . . . . . . . 9
⊢
((((((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) → ∃𝑟 ∈ (Base‘𝑅)𝑣 = [𝑟](𝑅 ~QG 𝑀)) |
| 110 | 104, 109 | r19.29a 3149 |
. . . . . . . 8
⊢
((((((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) → (𝑢(.r‘𝑄)𝑣) = (1r‘𝑄)) |
| 111 | | eqid 2736 |
. . . . . . . . . 10
⊢
(oppr‘𝑂) = (oppr‘𝑂) |
| 112 | | eqid 2736 |
. . . . . . . . . 10
⊢ (𝑂 /s (𝑂 ~QG 𝑀)) = (𝑂 /s (𝑂 ~QG 𝑀)) |
| 113 | 3 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖ {(0g‘𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) → 𝑅 ∈ NzRing) |
| 114 | 9 | opprnzr 20487 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ NzRing → 𝑂 ∈ NzRing) |
| 115 | 113, 114 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖ {(0g‘𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) → 𝑂 ∈ NzRing) |
| 116 | 12 | ad3antrrr 730 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖ {(0g‘𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) → 𝑀 ∈ (MaxIdeal‘𝑂)) |
| 117 | 6 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖ {(0g‘𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) → 𝑀 ∈ (MaxIdeal‘𝑅)) |
| 118 | 9, 62, 117 | opprmxidlabs 33507 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖ {(0g‘𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) → 𝑀 ∈
(MaxIdeal‘(oppr‘𝑂))) |
| 119 | | simplr 768 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖ {(0g‘𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) → 𝑥 ∈ (Base‘𝑅)) |
| 120 | 94 | a1i 11 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖ {(0g‘𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) → (Base‘𝑅) = (Base‘𝑂)) |
| 121 | 119, 120 | eleqtrd 2837 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖ {(0g‘𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) → 𝑥 ∈ (Base‘𝑂)) |
| 122 | | simplr 768 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑥 ∈ 𝑀) → 𝑢 = [𝑥](𝑅 ~QG 𝑀)) |
| 123 | 5 | ringgrpd 20207 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑅 ∈ Grp) |
| 124 | 123 | ad4antr 732 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑥 ∈ 𝑀) → 𝑅 ∈ Grp) |
| 125 | | lidlnsg 21214 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) → 𝑀 ∈ (NrmSGrp‘𝑅)) |
| 126 | 5, 8, 125 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑀 ∈ (NrmSGrp‘𝑅)) |
| 127 | | nsgsubg 19146 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ (NrmSGrp‘𝑅) → 𝑀 ∈ (SubGrp‘𝑅)) |
| 128 | 126, 127 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ∈ (SubGrp‘𝑅)) |
| 129 | 128 | ad4antr 732 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑥 ∈ 𝑀) → 𝑀 ∈ (SubGrp‘𝑅)) |
| 130 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑥 ∈ 𝑀) → 𝑥 ∈ 𝑀) |
| 131 | | eqid 2736 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ~QG 𝑀) = (𝑅 ~QG 𝑀) |
| 132 | 131 | eqg0el 19171 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Grp ∧ 𝑀 ∈ (SubGrp‘𝑅)) → ([𝑥](𝑅 ~QG 𝑀) = 𝑀 ↔ 𝑥 ∈ 𝑀)) |
| 133 | 132 | biimpar 477 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Grp ∧ 𝑀 ∈ (SubGrp‘𝑅)) ∧ 𝑥 ∈ 𝑀) → [𝑥](𝑅 ~QG 𝑀) = 𝑀) |
| 134 | 124, 129,
130, 133 | syl21anc 837 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑥 ∈ 𝑀) → [𝑥](𝑅 ~QG 𝑀) = 𝑀) |
| 135 | | eqid 2736 |
. . . . . . . . . . . . . . 15
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 136 | 2, 131, 135 | eqgid 19168 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ (SubGrp‘𝑅) →
[(0g‘𝑅)](𝑅 ~QG 𝑀) = 𝑀) |
| 137 | 129, 136 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑥 ∈ 𝑀) → [(0g‘𝑅)](𝑅 ~QG 𝑀) = 𝑀) |
| 138 | 134, 137 | eqtr4d 2774 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑥 ∈ 𝑀) → [𝑥](𝑅 ~QG 𝑀) = [(0g‘𝑅)](𝑅 ~QG 𝑀)) |
| 139 | 1, 135 | qus0 19177 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ (NrmSGrp‘𝑅) →
[(0g‘𝑅)](𝑅 ~QG 𝑀) = (0g‘𝑄)) |
| 140 | 126, 139 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
[(0g‘𝑅)](𝑅 ~QG 𝑀) = (0g‘𝑄)) |
| 141 | 140 | ad4antr 732 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑥 ∈ 𝑀) → [(0g‘𝑅)](𝑅 ~QG 𝑀) = (0g‘𝑄)) |
| 142 | 122, 138,
141 | 3eqtrd 2775 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑥 ∈ 𝑀) → 𝑢 = (0g‘𝑄)) |
| 143 | | eldifsnneq 4772 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)})
→ ¬ 𝑢 =
(0g‘𝑄)) |
| 144 | 143 | ad4antlr 733 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑥 ∈ 𝑀) → ¬ 𝑢 = (0g‘𝑄)) |
| 145 | 142, 144 | pm2.65da 816 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖ {(0g‘𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) → ¬ 𝑥 ∈ 𝑀) |
| 146 | 111, 112,
115, 116, 118, 121, 145 | qsdrngilem 33514 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖ {(0g‘𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) → ∃𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))(𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) |
| 147 | 146 | ad2antrr 726 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) → ∃𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))(𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) |
| 148 | 110, 147 | r19.29a 3149 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) → (𝑢(.r‘𝑄)𝑣) = (1r‘𝑄)) |
| 149 | | simpllr 775 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) → 𝑢 = [𝑥](𝑅 ~QG 𝑀)) |
| 150 | 149 | oveq2d 7426 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) → (𝑣(.r‘𝑄)𝑢) = (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀))) |
| 151 | | simpr 484 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) → (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) |
| 152 | 150, 151 | eqtrd 2771 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) → (𝑣(.r‘𝑄)𝑢) = (1r‘𝑄)) |
| 153 | 148, 152 | jca 511 |
. . . . . 6
⊢
((((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) → ((𝑢(.r‘𝑄)𝑣) = (1r‘𝑄) ∧ (𝑣(.r‘𝑄)𝑢) = (1r‘𝑄))) |
| 154 | 153 | anasss 466 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
∧ 𝑥 ∈
(Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ (𝑣 ∈ (Base‘𝑄) ∧ (𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄))) → ((𝑢(.r‘𝑄)𝑣) = (1r‘𝑄) ∧ (𝑣(.r‘𝑄)𝑢) = (1r‘𝑄))) |
| 155 | 9, 1, 113, 117, 116, 119, 145 | qsdrngilem 33514 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖ {(0g‘𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) → ∃𝑣 ∈ (Base‘𝑄)(𝑣(.r‘𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r‘𝑄)) |
| 156 | 154, 155 | reximddv 3157 |
. . . 4
⊢ ((((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖ {(0g‘𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) → ∃𝑣 ∈ (Base‘𝑄)((𝑢(.r‘𝑄)𝑣) = (1r‘𝑄) ∧ (𝑣(.r‘𝑄)𝑢) = (1r‘𝑄))) |
| 157 | 37, 46 | eleqtrrd 2838 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖ {(0g‘𝑄)})) → 𝑢 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑀))) |
| 158 | | elqsi 8789 |
. . . . 5
⊢ (𝑢 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑀)) → ∃𝑥 ∈ (Base‘𝑅)𝑢 = [𝑥](𝑅 ~QG 𝑀)) |
| 159 | 157, 158 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖ {(0g‘𝑄)})) → ∃𝑥 ∈ (Base‘𝑅)𝑢 = [𝑥](𝑅 ~QG 𝑀)) |
| 160 | 156, 159 | r19.29a 3149 |
. . 3
⊢ ((𝜑 ∧ 𝑢 ∈ ((Base‘𝑄) ∖ {(0g‘𝑄)})) → ∃𝑣 ∈ (Base‘𝑄)((𝑢(.r‘𝑄)𝑣) = (1r‘𝑄) ∧ (𝑣(.r‘𝑄)𝑢) = (1r‘𝑄))) |
| 161 | 160 | ralrimiva 3133 |
. 2
⊢ (𝜑 → ∀𝑢 ∈ ((Base‘𝑄) ∖ {(0g‘𝑄)})∃𝑣 ∈ (Base‘𝑄)((𝑢(.r‘𝑄)𝑣) = (1r‘𝑄) ∧ (𝑣(.r‘𝑄)𝑢) = (1r‘𝑄))) |
| 162 | 29, 26, 25, 30, 31, 33 | isdrng4 33294 |
. 2
⊢ (𝜑 → (𝑄 ∈ DivRing ↔
((1r‘𝑄)
≠ (0g‘𝑄) ∧ ∀𝑢 ∈ ((Base‘𝑄) ∖ {(0g‘𝑄)})∃𝑣 ∈ (Base‘𝑄)((𝑢(.r‘𝑄)𝑣) = (1r‘𝑄) ∧ (𝑣(.r‘𝑄)𝑢) = (1r‘𝑄))))) |
| 163 | 28, 161, 162 | mpbir2and 713 |
1
⊢ (𝜑 → 𝑄 ∈ DivRing) |