Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qsdrngi Structured version   Visualization version   GIF version

Theorem qsdrngi 33503
Description: A quotient by a maximal left and maximal right ideal is a division ring. (Contributed by Thierry Arnoux, 9-Mar-2025.)
Hypotheses
Ref Expression
qsdrng.0 𝑂 = (oppr𝑅)
qsdrng.q 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀))
qsdrng.r (𝜑𝑅 ∈ NzRing)
qsdrngi.1 (𝜑𝑀 ∈ (MaxIdeal‘𝑅))
qsdrngi.2 (𝜑𝑀 ∈ (MaxIdeal‘𝑂))
Assertion
Ref Expression
qsdrngi (𝜑𝑄 ∈ DivRing)

Proof of Theorem qsdrngi
Dummy variables 𝑟 𝑢 𝑣 𝑥 𝑠 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qsdrng.q . . . 4 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀))
2 eqid 2735 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3 qsdrng.r . . . . 5 (𝜑𝑅 ∈ NzRing)
4 nzrring 20533 . . . . 5 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
53, 4syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
6 qsdrngi.1 . . . . . . 7 (𝜑𝑀 ∈ (MaxIdeal‘𝑅))
72mxidlidl 33471 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (LIdeal‘𝑅))
85, 6, 7syl2anc 584 . . . . . 6 (𝜑𝑀 ∈ (LIdeal‘𝑅))
9 qsdrng.0 . . . . . . . . 9 𝑂 = (oppr𝑅)
109opprring 20364 . . . . . . . 8 (𝑅 ∈ Ring → 𝑂 ∈ Ring)
115, 10syl 17 . . . . . . 7 (𝜑𝑂 ∈ Ring)
12 qsdrngi.2 . . . . . . 7 (𝜑𝑀 ∈ (MaxIdeal‘𝑂))
13 eqid 2735 . . . . . . . 8 (Base‘𝑂) = (Base‘𝑂)
1413mxidlidl 33471 . . . . . . 7 ((𝑂 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑂)) → 𝑀 ∈ (LIdeal‘𝑂))
1511, 12, 14syl2anc 584 . . . . . 6 (𝜑𝑀 ∈ (LIdeal‘𝑂))
168, 15elind 4210 . . . . 5 (𝜑𝑀 ∈ ((LIdeal‘𝑅) ∩ (LIdeal‘𝑂)))
17 eqid 2735 . . . . . 6 (LIdeal‘𝑅) = (LIdeal‘𝑅)
18 eqid 2735 . . . . . 6 (LIdeal‘𝑂) = (LIdeal‘𝑂)
19 eqid 2735 . . . . . 6 (2Ideal‘𝑅) = (2Ideal‘𝑅)
2017, 9, 18, 192idlval 21279 . . . . 5 (2Ideal‘𝑅) = ((LIdeal‘𝑅) ∩ (LIdeal‘𝑂))
2116, 20eleqtrrdi 2850 . . . 4 (𝜑𝑀 ∈ (2Ideal‘𝑅))
222mxidlnr 33472 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ≠ (Base‘𝑅))
235, 6, 22syl2anc 584 . . . 4 (𝜑𝑀 ≠ (Base‘𝑅))
241, 2, 5, 3, 21, 23qsnzr 33463 . . 3 (𝜑𝑄 ∈ NzRing)
25 eqid 2735 . . . 4 (1r𝑄) = (1r𝑄)
26 eqid 2735 . . . 4 (0g𝑄) = (0g𝑄)
2725, 26nzrnz 20532 . . 3 (𝑄 ∈ NzRing → (1r𝑄) ≠ (0g𝑄))
2824, 27syl 17 . 2 (𝜑 → (1r𝑄) ≠ (0g𝑄))
29 eqid 2735 . . . . . . . . . . . . . 14 (Base‘𝑄) = (Base‘𝑄)
30 eqid 2735 . . . . . . . . . . . . . 14 (.r𝑄) = (.r𝑄)
31 eqid 2735 . . . . . . . . . . . . . 14 (Unit‘𝑄) = (Unit‘𝑄)
321, 19qusring 21303 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (2Ideal‘𝑅)) → 𝑄 ∈ Ring)
335, 21, 32syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑𝑄 ∈ Ring)
3433ad10antr 744 . . . . . . . . . . . . . . 15 (((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) → 𝑄 ∈ Ring)
3534adantr 480 . . . . . . . . . . . . . 14 ((((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → 𝑄 ∈ Ring)
36 eldifi 4141 . . . . . . . . . . . . . . . 16 (𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)}) → 𝑢 ∈ (Base‘𝑄))
3736adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) → 𝑢 ∈ (Base‘𝑄))
3837ad10antr 744 . . . . . . . . . . . . . 14 ((((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → 𝑢 ∈ (Base‘𝑄))
39 ovex 7464 . . . . . . . . . . . . . . . . 17 (𝑅 ~QG 𝑀) ∈ V
4039ecelqsi 8812 . . . . . . . . . . . . . . . 16 (𝑟 ∈ (Base‘𝑅) → [𝑟](𝑅 ~QG 𝑀) ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑀)))
4140ad4antlr 733 . . . . . . . . . . . . . . 15 ((((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → [𝑟](𝑅 ~QG 𝑀) ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑀)))
421a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑𝑄 = (𝑅 /s (𝑅 ~QG 𝑀)))
43 eqidd 2736 . . . . . . . . . . . . . . . . . 18 (𝜑 → (Base‘𝑅) = (Base‘𝑅))
44 ovexd 7466 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑅 ~QG 𝑀) ∈ V)
4542, 43, 44, 3qusbas 17592 . . . . . . . . . . . . . . . . 17 (𝜑 → ((Base‘𝑅) / (𝑅 ~QG 𝑀)) = (Base‘𝑄))
4645adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) → ((Base‘𝑅) / (𝑅 ~QG 𝑀)) = (Base‘𝑄))
4746ad10antr 744 . . . . . . . . . . . . . . 15 ((((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → ((Base‘𝑅) / (𝑅 ~QG 𝑀)) = (Base‘𝑄))
4841, 47eleqtrd 2841 . . . . . . . . . . . . . 14 ((((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → [𝑟](𝑅 ~QG 𝑀) ∈ (Base‘𝑄))
4939ecelqsi 8812 . . . . . . . . . . . . . . . 16 (𝑠 ∈ (Base‘𝑅) → [𝑠](𝑅 ~QG 𝑀) ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑀)))
5049ad2antlr 727 . . . . . . . . . . . . . . 15 ((((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → [𝑠](𝑅 ~QG 𝑀) ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑀)))
5150, 47eleqtrd 2841 . . . . . . . . . . . . . 14 ((((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → [𝑠](𝑅 ~QG 𝑀) ∈ (Base‘𝑄))
52 simpllr 776 . . . . . . . . . . . . . . . 16 ((((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → 𝑣 = [𝑟](𝑅 ~QG 𝑀))
53 simp-9r 794 . . . . . . . . . . . . . . . . 17 ((((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → 𝑢 = [𝑥](𝑅 ~QG 𝑀))
5453eqcomd 2741 . . . . . . . . . . . . . . . 16 ((((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → [𝑥](𝑅 ~QG 𝑀) = 𝑢)
5552, 54oveq12d 7449 . . . . . . . . . . . . . . 15 ((((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = ([𝑟](𝑅 ~QG 𝑀)(.r𝑄)𝑢))
56 simp-7r 790 . . . . . . . . . . . . . . 15 ((((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄))
5755, 56eqtr3d 2777 . . . . . . . . . . . . . 14 ((((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → ([𝑟](𝑅 ~QG 𝑀)(.r𝑄)𝑢) = (1r𝑄))
58 eqid 2735 . . . . . . . . . . . . . . . 16 (oppr𝑄) = (oppr𝑄)
59 eqid 2735 . . . . . . . . . . . . . . . 16 (.r‘(oppr𝑄)) = (.r‘(oppr𝑄))
6029, 30, 58, 59opprmul 20354 . . . . . . . . . . . . . . 15 ([𝑠](𝑅 ~QG 𝑀)(.r‘(oppr𝑄))𝑢) = (𝑢(.r𝑄)[𝑠](𝑅 ~QG 𝑀))
61 simp-5r 786 . . . . . . . . . . . . . . . 16 ((((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀))))
625ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) → 𝑅 ∈ Ring)
6362ad8antr 740 . . . . . . . . . . . . . . . . . 18 ((((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → 𝑅 ∈ Ring)
6421ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) → 𝑀 ∈ (2Ideal‘𝑅))
6564ad8antr 740 . . . . . . . . . . . . . . . . . 18 ((((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → 𝑀 ∈ (2Ideal‘𝑅))
662, 9, 1, 63, 65, 29, 51, 38opprqusmulr 33499 . . . . . . . . . . . . . . . . 17 ((((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → ([𝑠](𝑅 ~QG 𝑀)(.r‘(oppr𝑄))𝑢) = ([𝑠](𝑅 ~QG 𝑀)(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))𝑢))
67 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → 𝑤 = [𝑠](𝑅 ~QG 𝑀))
682, 17lidlss 21240 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑀 ∈ (LIdeal‘𝑅) → 𝑀 ⊆ (Base‘𝑅))
698, 68syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑀 ⊆ (Base‘𝑅))
709, 2oppreqg 33491 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ Ring ∧ 𝑀 ⊆ (Base‘𝑅)) → (𝑅 ~QG 𝑀) = (𝑂 ~QG 𝑀))
715, 69, 70syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑅 ~QG 𝑀) = (𝑂 ~QG 𝑀))
7271ad10antr 744 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) → (𝑅 ~QG 𝑀) = (𝑂 ~QG 𝑀))
7372adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → (𝑅 ~QG 𝑀) = (𝑂 ~QG 𝑀))
7473eceq2d 8787 . . . . . . . . . . . . . . . . . . 19 ((((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → [𝑥](𝑅 ~QG 𝑀) = [𝑥](𝑂 ~QG 𝑀))
7553, 74eqtr2d 2776 . . . . . . . . . . . . . . . . . 18 ((((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → [𝑥](𝑂 ~QG 𝑀) = 𝑢)
7667, 75oveq12d 7449 . . . . . . . . . . . . . . . . 17 ((((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = ([𝑠](𝑅 ~QG 𝑀)(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))𝑢))
7766, 76eqtr4d 2778 . . . . . . . . . . . . . . . 16 ((((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → ([𝑠](𝑅 ~QG 𝑀)(.r‘(oppr𝑄))𝑢) = (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)))
7858, 25oppr1 20367 . . . . . . . . . . . . . . . . . . 19 (1r𝑄) = (1r‘(oppr𝑄))
792, 9, 1, 5, 21opprqus1r 33500 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1r‘(oppr𝑄)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀))))
8078, 79eqtrid 2787 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1r𝑄) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀))))
8180ad10antr 744 . . . . . . . . . . . . . . . . 17 (((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) → (1r𝑄) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀))))
8281adantr 480 . . . . . . . . . . . . . . . 16 ((((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → (1r𝑄) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀))))
8361, 77, 823eqtr4d 2785 . . . . . . . . . . . . . . 15 ((((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → ([𝑠](𝑅 ~QG 𝑀)(.r‘(oppr𝑄))𝑢) = (1r𝑄))
8460, 83eqtr3id 2789 . . . . . . . . . . . . . 14 ((((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → (𝑢(.r𝑄)[𝑠](𝑅 ~QG 𝑀)) = (1r𝑄))
8529, 26, 25, 30, 31, 35, 38, 48, 51, 57, 84ringinveu 33278 . . . . . . . . . . . . 13 ((((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → [𝑠](𝑅 ~QG 𝑀) = [𝑟](𝑅 ~QG 𝑀))
8685, 67, 523eqtr4rd 2786 . . . . . . . . . . . 12 ((((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → 𝑣 = 𝑤)
8786oveq2d 7447 . . . . . . . . . . 11 ((((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → (𝑢(.r𝑄)𝑣) = (𝑢(.r𝑄)𝑤))
8867oveq2d 7447 . . . . . . . . . . 11 ((((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → (𝑢(.r𝑄)𝑤) = (𝑢(.r𝑄)[𝑠](𝑅 ~QG 𝑀)))
8987, 88, 843eqtrd 2779 . . . . . . . . . 10 ((((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) ∧ 𝑠 ∈ (Base‘𝑅)) ∧ 𝑤 = [𝑠](𝑅 ~QG 𝑀)) → (𝑢(.r𝑄)𝑣) = (1r𝑄))
90 simp-4r 784 . . . . . . . . . . . 12 ((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) → 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀))))
9171qseq2d 8804 . . . . . . . . . . . . . 14 (𝜑 → ((Base‘𝑅) / (𝑅 ~QG 𝑀)) = ((Base‘𝑅) / (𝑂 ~QG 𝑀)))
9291ad9antr 742 . . . . . . . . . . . . 13 ((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) → ((Base‘𝑅) / (𝑅 ~QG 𝑀)) = ((Base‘𝑅) / (𝑂 ~QG 𝑀)))
93 eqidd 2736 . . . . . . . . . . . . . 14 ((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) → (𝑂 /s (𝑂 ~QG 𝑀)) = (𝑂 /s (𝑂 ~QG 𝑀)))
949, 2opprbas 20358 . . . . . . . . . . . . . . 15 (Base‘𝑅) = (Base‘𝑂)
9594a1i 11 . . . . . . . . . . . . . 14 ((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) → (Base‘𝑅) = (Base‘𝑂))
96 ovexd 7466 . . . . . . . . . . . . . 14 ((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) → (𝑂 ~QG 𝑀) ∈ V)
979fvexi 6921 . . . . . . . . . . . . . . 15 𝑂 ∈ V
9897a1i 11 . . . . . . . . . . . . . 14 ((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) → 𝑂 ∈ V)
9993, 95, 96, 98qusbas 17592 . . . . . . . . . . . . 13 ((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) → ((Base‘𝑅) / (𝑂 ~QG 𝑀)) = (Base‘(𝑂 /s (𝑂 ~QG 𝑀))))
10092, 99eqtr2d 2776 . . . . . . . . . . . 12 ((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) → (Base‘(𝑂 /s (𝑂 ~QG 𝑀))) = ((Base‘𝑅) / (𝑅 ~QG 𝑀)))
10190, 100eleqtrd 2841 . . . . . . . . . . 11 ((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) → 𝑤 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑀)))
102 elqsi 8809 . . . . . . . . . . 11 (𝑤 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑀)) → ∃𝑠 ∈ (Base‘𝑅)𝑤 = [𝑠](𝑅 ~QG 𝑀))
103101, 102syl 17 . . . . . . . . . 10 ((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) → ∃𝑠 ∈ (Base‘𝑅)𝑤 = [𝑠](𝑅 ~QG 𝑀))
10489, 103r19.29a 3160 . . . . . . . . 9 ((((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ 𝑟 ∈ (Base‘𝑅)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) → (𝑢(.r𝑄)𝑣) = (1r𝑄))
105 simp-4r 784 . . . . . . . . . . 11 ((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) → 𝑣 ∈ (Base‘𝑄))
10646ad6antr 736 . . . . . . . . . . 11 ((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) → ((Base‘𝑅) / (𝑅 ~QG 𝑀)) = (Base‘𝑄))
107105, 106eleqtrrd 2842 . . . . . . . . . 10 ((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) → 𝑣 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑀)))
108 elqsi 8809 . . . . . . . . . 10 (𝑣 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑀)) → ∃𝑟 ∈ (Base‘𝑅)𝑣 = [𝑟](𝑅 ~QG 𝑀))
109107, 108syl 17 . . . . . . . . 9 ((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) → ∃𝑟 ∈ (Base‘𝑅)𝑣 = [𝑟](𝑅 ~QG 𝑀))
110104, 109r19.29a 3160 . . . . . . . 8 ((((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) ∧ 𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))) ∧ (𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀)))) → (𝑢(.r𝑄)𝑣) = (1r𝑄))
111 eqid 2735 . . . . . . . . . 10 (oppr𝑂) = (oppr𝑂)
112 eqid 2735 . . . . . . . . . 10 (𝑂 /s (𝑂 ~QG 𝑀)) = (𝑂 /s (𝑂 ~QG 𝑀))
1133ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) → 𝑅 ∈ NzRing)
1149opprnzr 20539 . . . . . . . . . . 11 (𝑅 ∈ NzRing → 𝑂 ∈ NzRing)
115113, 114syl 17 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) → 𝑂 ∈ NzRing)
11612ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) → 𝑀 ∈ (MaxIdeal‘𝑂))
1176ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) → 𝑀 ∈ (MaxIdeal‘𝑅))
1189, 62, 117opprmxidlabs 33495 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) → 𝑀 ∈ (MaxIdeal‘(oppr𝑂)))
119 simplr 769 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) → 𝑥 ∈ (Base‘𝑅))
12094a1i 11 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) → (Base‘𝑅) = (Base‘𝑂))
121119, 120eleqtrd 2841 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) → 𝑥 ∈ (Base‘𝑂))
122 simplr 769 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑥𝑀) → 𝑢 = [𝑥](𝑅 ~QG 𝑀))
1235ringgrpd 20260 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ Grp)
124123ad4antr 732 . . . . . . . . . . . . . 14 (((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑥𝑀) → 𝑅 ∈ Grp)
125 lidlnsg 21276 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) → 𝑀 ∈ (NrmSGrp‘𝑅))
1265, 8, 125syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ (NrmSGrp‘𝑅))
127 nsgsubg 19189 . . . . . . . . . . . . . . . 16 (𝑀 ∈ (NrmSGrp‘𝑅) → 𝑀 ∈ (SubGrp‘𝑅))
128126, 127syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ (SubGrp‘𝑅))
129128ad4antr 732 . . . . . . . . . . . . . 14 (((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑥𝑀) → 𝑀 ∈ (SubGrp‘𝑅))
130 simpr 484 . . . . . . . . . . . . . 14 (((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑥𝑀) → 𝑥𝑀)
131 eqid 2735 . . . . . . . . . . . . . . . 16 (𝑅 ~QG 𝑀) = (𝑅 ~QG 𝑀)
132131eqg0el 19214 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Grp ∧ 𝑀 ∈ (SubGrp‘𝑅)) → ([𝑥](𝑅 ~QG 𝑀) = 𝑀𝑥𝑀))
133132biimpar 477 . . . . . . . . . . . . . 14 (((𝑅 ∈ Grp ∧ 𝑀 ∈ (SubGrp‘𝑅)) ∧ 𝑥𝑀) → [𝑥](𝑅 ~QG 𝑀) = 𝑀)
134124, 129, 130, 133syl21anc 838 . . . . . . . . . . . . 13 (((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑥𝑀) → [𝑥](𝑅 ~QG 𝑀) = 𝑀)
135 eqid 2735 . . . . . . . . . . . . . . 15 (0g𝑅) = (0g𝑅)
1362, 131, 135eqgid 19211 . . . . . . . . . . . . . 14 (𝑀 ∈ (SubGrp‘𝑅) → [(0g𝑅)](𝑅 ~QG 𝑀) = 𝑀)
137129, 136syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑥𝑀) → [(0g𝑅)](𝑅 ~QG 𝑀) = 𝑀)
138134, 137eqtr4d 2778 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑥𝑀) → [𝑥](𝑅 ~QG 𝑀) = [(0g𝑅)](𝑅 ~QG 𝑀))
1391, 135qus0 19220 . . . . . . . . . . . . . 14 (𝑀 ∈ (NrmSGrp‘𝑅) → [(0g𝑅)](𝑅 ~QG 𝑀) = (0g𝑄))
140126, 139syl 17 . . . . . . . . . . . . 13 (𝜑 → [(0g𝑅)](𝑅 ~QG 𝑀) = (0g𝑄))
141140ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑥𝑀) → [(0g𝑅)](𝑅 ~QG 𝑀) = (0g𝑄))
142122, 138, 1413eqtrd 2779 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑥𝑀) → 𝑢 = (0g𝑄))
143 eldifsnneq 4796 . . . . . . . . . . . 12 (𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)}) → ¬ 𝑢 = (0g𝑄))
144143ad4antlr 733 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑥𝑀) → ¬ 𝑢 = (0g𝑄))
145142, 144pm2.65da 817 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) → ¬ 𝑥𝑀)
146111, 112, 115, 116, 118, 121, 145qsdrngilem 33502 . . . . . . . . 9 ((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) → ∃𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))(𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀))))
147146ad2antrr 726 . . . . . . . 8 ((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) → ∃𝑤 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝑀)))(𝑤(.r‘(𝑂 /s (𝑂 ~QG 𝑀)))[𝑥](𝑂 ~QG 𝑀)) = (1r‘(𝑂 /s (𝑂 ~QG 𝑀))))
148110, 147r19.29a 3160 . . . . . . 7 ((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) → (𝑢(.r𝑄)𝑣) = (1r𝑄))
149 simpllr 776 . . . . . . . . 9 ((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) → 𝑢 = [𝑥](𝑅 ~QG 𝑀))
150149oveq2d 7447 . . . . . . . 8 ((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) → (𝑣(.r𝑄)𝑢) = (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)))
151 simpr 484 . . . . . . . 8 ((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) → (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄))
152150, 151eqtrd 2775 . . . . . . 7 ((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) → (𝑣(.r𝑄)𝑢) = (1r𝑄))
153148, 152jca 511 . . . . . 6 ((((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ 𝑣 ∈ (Base‘𝑄)) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄)) → ((𝑢(.r𝑄)𝑣) = (1r𝑄) ∧ (𝑣(.r𝑄)𝑢) = (1r𝑄)))
154153anasss 466 . . . . 5 (((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) ∧ (𝑣 ∈ (Base‘𝑄) ∧ (𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄))) → ((𝑢(.r𝑄)𝑣) = (1r𝑄) ∧ (𝑣(.r𝑄)𝑢) = (1r𝑄)))
1559, 1, 113, 117, 116, 119, 145qsdrngilem 33502 . . . . 5 ((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) → ∃𝑣 ∈ (Base‘𝑄)(𝑣(.r𝑄)[𝑥](𝑅 ~QG 𝑀)) = (1r𝑄))
156154, 155reximddv 3169 . . . 4 ((((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑢 = [𝑥](𝑅 ~QG 𝑀)) → ∃𝑣 ∈ (Base‘𝑄)((𝑢(.r𝑄)𝑣) = (1r𝑄) ∧ (𝑣(.r𝑄)𝑢) = (1r𝑄)))
15737, 46eleqtrrd 2842 . . . . 5 ((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) → 𝑢 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑀)))
158 elqsi 8809 . . . . 5 (𝑢 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑀)) → ∃𝑥 ∈ (Base‘𝑅)𝑢 = [𝑥](𝑅 ~QG 𝑀))
159157, 158syl 17 . . . 4 ((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) → ∃𝑥 ∈ (Base‘𝑅)𝑢 = [𝑥](𝑅 ~QG 𝑀))
160156, 159r19.29a 3160 . . 3 ((𝜑𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) → ∃𝑣 ∈ (Base‘𝑄)((𝑢(.r𝑄)𝑣) = (1r𝑄) ∧ (𝑣(.r𝑄)𝑢) = (1r𝑄)))
161160ralrimiva 3144 . 2 (𝜑 → ∀𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})∃𝑣 ∈ (Base‘𝑄)((𝑢(.r𝑄)𝑣) = (1r𝑄) ∧ (𝑣(.r𝑄)𝑢) = (1r𝑄)))
16229, 26, 25, 30, 31, 33isdrng4 33279 . 2 (𝜑 → (𝑄 ∈ DivRing ↔ ((1r𝑄) ≠ (0g𝑄) ∧ ∀𝑢 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})∃𝑣 ∈ (Base‘𝑄)((𝑢(.r𝑄)𝑣) = (1r𝑄) ∧ (𝑣(.r𝑄)𝑢) = (1r𝑄)))))
16328, 161, 162mpbir2and 713 1 (𝜑𝑄 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  Vcvv 3478  cdif 3960  cin 3962  wss 3963  {csn 4631  cfv 6563  (class class class)co 7431  [cec 8742   / cqs 8743  Basecbs 17245  .rcmulr 17299  0gc0g 17486   /s cqus 17552  Grpcgrp 18964  SubGrpcsubg 19151  NrmSGrpcnsg 19152   ~QG cqg 19153  1rcur 20199  Ringcrg 20251  opprcoppr 20350  Unitcui 20372  NzRingcnzr 20529  DivRingcdr 20746  LIdealclidl 21234  2Idealc2idl 21277  MaxIdealcmxidl 33467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-ec 8746  df-qs 8750  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-imas 17555  df-qus 17556  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-nsg 19155  df-eqg 19156  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-nzr 20530  df-subrg 20587  df-drng 20748  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lmhm 21039  df-lbs 21092  df-sra 21190  df-rgmod 21191  df-lidl 21236  df-rsp 21237  df-2idl 21278  df-dsmm 21770  df-frlm 21785  df-uvc 21821  df-mxidl 33468
This theorem is referenced by:  qsdrng  33505  algextdeglem4  33726
  Copyright terms: Public domain W3C validator