MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnopp2hpgb Structured version   Visualization version   GIF version

Theorem lnopp2hpgb 28736
Description: Theorem 9.8 of [Schwabhauser] p. 71. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
ishpg.p 𝑃 = (Base‘𝐺)
ishpg.i 𝐼 = (Itv‘𝐺)
ishpg.l 𝐿 = (LineG‘𝐺)
ishpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
ishpg.g (𝜑𝐺 ∈ TarskiG)
ishpg.d (𝜑𝐷 ∈ ran 𝐿)
hpgbr.a (𝜑𝐴𝑃)
hpgbr.b (𝜑𝐵𝑃)
lnopp2hpgb.c (𝜑𝐶𝑃)
lnopp2hpgb.1 (𝜑𝐴𝑂𝐶)
Assertion
Ref Expression
lnopp2hpgb (𝜑 → (𝐵𝑂𝐶𝐴((hpG‘𝐺)‘𝐷)𝐵))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝐶,𝑎,𝑏,𝑡   𝐷,𝑎,𝑏,𝑡   𝐺,𝑎,𝑏,𝑡   𝐼,𝑎,𝑏,𝑡   𝐿,𝑎,𝑏,𝑡   𝑂,𝑎,𝑏,𝑡   𝑃,𝑎,𝑏,𝑡   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)

Proof of Theorem lnopp2hpgb
Dummy variables 𝑑 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnopp2hpgb.c . . . . 5 (𝜑𝐶𝑃)
21adantr 480 . . . 4 ((𝜑𝐵𝑂𝐶) → 𝐶𝑃)
3 lnopp2hpgb.1 . . . . 5 (𝜑𝐴𝑂𝐶)
43adantr 480 . . . 4 ((𝜑𝐵𝑂𝐶) → 𝐴𝑂𝐶)
5 simpr 484 . . . 4 ((𝜑𝐵𝑂𝐶) → 𝐵𝑂𝐶)
6 breq2 5090 . . . . . 6 (𝑑 = 𝐶 → (𝐴𝑂𝑑𝐴𝑂𝐶))
7 breq2 5090 . . . . . 6 (𝑑 = 𝐶 → (𝐵𝑂𝑑𝐵𝑂𝐶))
86, 7anbi12d 632 . . . . 5 (𝑑 = 𝐶 → ((𝐴𝑂𝑑𝐵𝑂𝑑) ↔ (𝐴𝑂𝐶𝐵𝑂𝐶)))
98rspcev 3572 . . . 4 ((𝐶𝑃 ∧ (𝐴𝑂𝐶𝐵𝑂𝐶)) → ∃𝑑𝑃 (𝐴𝑂𝑑𝐵𝑂𝑑))
102, 4, 5, 9syl12anc 836 . . 3 ((𝜑𝐵𝑂𝐶) → ∃𝑑𝑃 (𝐴𝑂𝑑𝐵𝑂𝑑))
11 ishpg.p . . . . 5 𝑃 = (Base‘𝐺)
12 ishpg.i . . . . 5 𝐼 = (Itv‘𝐺)
13 ishpg.l . . . . 5 𝐿 = (LineG‘𝐺)
14 ishpg.o . . . . 5 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
15 ishpg.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
16 ishpg.d . . . . 5 (𝜑𝐷 ∈ ran 𝐿)
17 hpgbr.a . . . . 5 (𝜑𝐴𝑃)
18 hpgbr.b . . . . 5 (𝜑𝐵𝑃)
1911, 12, 13, 14, 15, 16, 17, 18hpgbr 28733 . . . 4 (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑑𝑃 (𝐴𝑂𝑑𝐵𝑂𝑑)))
2019adantr 480 . . 3 ((𝜑𝐵𝑂𝐶) → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑑𝑃 (𝐴𝑂𝑑𝐵𝑂𝑑)))
2110, 20mpbird 257 . 2 ((𝜑𝐵𝑂𝐶) → 𝐴((hpG‘𝐺)‘𝐷)𝐵)
22 eqid 2731 . . . . . . . 8 (dist‘𝐺) = (dist‘𝐺)
2316ad7antr 738 . . . . . . . . 9 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝐷 ∈ ran 𝐿)
2423ad3antrrr 730 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐷 ∈ ran 𝐿)
2515ad7antr 738 . . . . . . . . 9 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝐺 ∈ TarskiG)
2625ad3antrrr 730 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐺 ∈ TarskiG)
27 eqid 2731 . . . . . . . 8 (hlG‘𝐺) = (hlG‘𝐺)
2817ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → 𝐴𝑃)
2928ad4antr 732 . . . . . . . . 9 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝐴𝑃)
3029ad3antrrr 730 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐴𝑃)
3118ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → 𝐵𝑃)
3231ad4antr 732 . . . . . . . . 9 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝐵𝑃)
3332ad3antrrr 730 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐵𝑃)
341ad10antr 744 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐶𝑃)
353ad10antr 744 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐴𝑂𝐶)
36 simpr 484 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧𝐷)
37 simplr 768 . . . . . . . . . . . . . . 15 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝑦𝐷)
3811, 13, 12, 25, 23, 37tglnpt 28522 . . . . . . . . . . . . . 14 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝑦𝑃)
3938ad3antrrr 730 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑦𝑃)
40 simp-5r 785 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑦𝐷)
4111, 22, 12, 14, 13, 24, 26, 30, 34, 35oppne1 28714 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → ¬ 𝐴𝐷)
42 nelne2 3026 . . . . . . . . . . . . . 14 ((𝑦𝐷 ∧ ¬ 𝐴𝐷) → 𝑦𝐴)
4340, 41, 42syl2anc 584 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑦𝐴)
4411, 12, 13, 26, 39, 30, 43tgelrnln 28603 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → (𝑦𝐿𝐴) ∈ ran 𝐿)
4511, 12, 13, 26, 39, 30, 43tglinerflx2 28607 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐴 ∈ (𝑦𝐿𝐴))
46 nelne1 3025 . . . . . . . . . . . . . 14 ((𝐴 ∈ (𝑦𝐿𝐴) ∧ ¬ 𝐴𝐷) → (𝑦𝐿𝐴) ≠ 𝐷)
4745, 41, 46syl2anc 584 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → (𝑦𝐿𝐴) ≠ 𝐷)
4847necomd 2983 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐷 ≠ (𝑦𝐿𝐴))
49 simpllr 775 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧𝑃)
50 simplrr 777 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 ∈ (𝑦𝐼𝐴))
5111, 12, 13, 26, 39, 30, 49, 43, 50btwnlng1 28592 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 ∈ (𝑦𝐿𝐴))
5236, 51elind 4145 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 ∈ (𝐷 ∩ (𝑦𝐿𝐴)))
5311, 12, 13, 26, 39, 30, 43tglinerflx1 28606 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑦 ∈ (𝑦𝐿𝐴))
5440, 53elind 4145 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑦 ∈ (𝐷 ∩ (𝑦𝐿𝐴)))
5511, 12, 13, 26, 24, 44, 48, 52, 54tglineineq 28616 . . . . . . . . . . 11 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 = 𝑦)
5655, 43eqnetrd 2995 . . . . . . . . . 10 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧𝐴)
5756necomd 2983 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐴𝑧)
58 simp-4r 783 . . . . . . . . . . . . . . 15 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝑥𝐷)
5911, 13, 12, 25, 23, 58tglnpt 28522 . . . . . . . . . . . . . 14 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝑥𝑃)
6059ad3antrrr 730 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑥𝑃)
61 simp-7r 789 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑥𝐷)
62 simplr 768 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → 𝑑𝑃)
6362ad4antr 732 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝑑𝑃)
6463ad3antrrr 730 . . . . . . . . . . . . . . 15 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑑𝑃)
65 simprr 772 . . . . . . . . . . . . . . . 16 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → 𝐵𝑂𝑑)
6665ad7antr 738 . . . . . . . . . . . . . . 15 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐵𝑂𝑑)
6711, 22, 12, 14, 13, 24, 26, 33, 64, 66oppne1 28714 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → ¬ 𝐵𝐷)
68 nelne2 3026 . . . . . . . . . . . . . 14 ((𝑥𝐷 ∧ ¬ 𝐵𝐷) → 𝑥𝐵)
6961, 67, 68syl2anc 584 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑥𝐵)
7011, 12, 13, 26, 60, 33, 69tgelrnln 28603 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → (𝑥𝐿𝐵) ∈ ran 𝐿)
7111, 12, 13, 26, 60, 33, 69tglinerflx2 28607 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐵 ∈ (𝑥𝐿𝐵))
72 nelne1 3025 . . . . . . . . . . . . . 14 ((𝐵 ∈ (𝑥𝐿𝐵) ∧ ¬ 𝐵𝐷) → (𝑥𝐿𝐵) ≠ 𝐷)
7371, 67, 72syl2anc 584 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → (𝑥𝐿𝐵) ≠ 𝐷)
7473necomd 2983 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐷 ≠ (𝑥𝐿𝐵))
75 simplrl 776 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 ∈ (𝑥𝐼𝐵))
7611, 12, 13, 26, 60, 33, 49, 69, 75btwnlng1 28592 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 ∈ (𝑥𝐿𝐵))
7736, 76elind 4145 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 ∈ (𝐷 ∩ (𝑥𝐿𝐵)))
7811, 12, 13, 26, 60, 33, 69tglinerflx1 28606 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑥 ∈ (𝑥𝐿𝐵))
7961, 78elind 4145 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑥 ∈ (𝐷 ∩ (𝑥𝐿𝐵)))
8011, 12, 13, 26, 24, 70, 74, 77, 79tglineineq 28616 . . . . . . . . . . 11 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 = 𝑥)
8180, 69eqnetrd 2995 . . . . . . . . . 10 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧𝐵)
8281necomd 2983 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐵𝑧)
83 simprl 770 . . . . . . . . . . . . . 14 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → 𝐴𝑂𝑑)
8483ad7antr 738 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐴𝑂𝑑)
8511, 22, 12, 14, 13, 24, 26, 30, 64, 84oppne2 28715 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → ¬ 𝑑𝐷)
86 nelne2 3026 . . . . . . . . . . . 12 ((𝑧𝐷 ∧ ¬ 𝑑𝐷) → 𝑧𝑑)
8736, 85, 86syl2anc 584 . . . . . . . . . . 11 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧𝑑)
8887necomd 2983 . . . . . . . . . 10 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑑𝑧)
89 simpllr 775 . . . . . . . . . . . . 13 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝑥 ∈ (𝐴𝐼𝑑))
9089ad3antrrr 730 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑥 ∈ (𝐴𝐼𝑑))
9111, 22, 12, 26, 30, 60, 64, 90tgbtwncom 28461 . . . . . . . . . . 11 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑥 ∈ (𝑑𝐼𝐴))
9280, 91eqeltrd 2831 . . . . . . . . . 10 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 ∈ (𝑑𝐼𝐴))
93 simp-4r 783 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑦 ∈ (𝐵𝐼𝑑))
9411, 22, 12, 26, 33, 39, 64, 93tgbtwncom 28461 . . . . . . . . . . 11 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑦 ∈ (𝑑𝐼𝐵))
9555, 94eqeltrd 2831 . . . . . . . . . 10 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 ∈ (𝑑𝐼𝐵))
9611, 12, 26, 64, 49, 30, 33, 88, 92, 95tgbtwnconn2 28549 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → (𝐴 ∈ (𝑧𝐼𝐵) ∨ 𝐵 ∈ (𝑧𝐼𝐴)))
9711, 12, 27, 30, 33, 49, 26ishlg 28575 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → (𝐴((hlG‘𝐺)‘𝑧)𝐵 ↔ (𝐴𝑧𝐵𝑧 ∧ (𝐴 ∈ (𝑧𝐼𝐵) ∨ 𝐵 ∈ (𝑧𝐼𝐴)))))
9857, 82, 96, 97mpbir3and 1343 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐴((hlG‘𝐺)‘𝑧)𝐵)
9911, 22, 12, 14, 13, 24, 26, 27, 30, 33, 34, 35, 36, 98opphl 28727 . . . . . . 7 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐵𝑂𝐶)
10023ad3antrrr 730 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝐷 ∈ ran 𝐿)
10125ad3antrrr 730 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝐺 ∈ TarskiG)
102 simpllr 775 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑧𝑃)
10332ad3antrrr 730 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝐵𝑃)
1041ad10antr 744 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝐶𝑃)
10529ad3antrrr 730 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝐴𝑃)
1063ad10antr 744 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝐴𝑂𝐶)
107 simp-5r 785 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑦𝐷)
10838ad3antrrr 730 . . . . . . . . . 10 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑦𝑃)
109 simplrr 777 . . . . . . . . . . 11 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑧 ∈ (𝑦𝐼𝐴))
110 simpr 484 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → ¬ 𝑧𝐷)
111 nelne2 3026 . . . . . . . . . . . . . 14 ((𝑦𝐷 ∧ ¬ 𝑧𝐷) → 𝑦𝑧)
112107, 110, 111syl2anc 584 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑦𝑧)
113112necomd 2983 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑧𝑦)
11411, 22, 12, 101, 108, 102, 105, 109, 113tgbtwnne 28463 . . . . . . . . . . 11 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑦𝐴)
11511, 12, 27, 108, 105, 102, 101, 105, 109, 114, 113btwnhl1 28585 . . . . . . . . . 10 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑧((hlG‘𝐺)‘𝑦)𝐴)
11611, 12, 27, 102, 105, 108, 101, 115hlcomd 28577 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝐴((hlG‘𝐺)‘𝑦)𝑧)
11711, 22, 12, 14, 13, 100, 101, 27, 105, 102, 104, 106, 107, 116opphl 28727 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑧𝑂𝐶)
11858ad3antrrr 730 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑥𝐷)
11959ad3antrrr 730 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑥𝑃)
120 simplrl 776 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑧 ∈ (𝑥𝐼𝐵))
121 nelne2 3026 . . . . . . . . . . . 12 ((𝑥𝐷 ∧ ¬ 𝑧𝐷) → 𝑥𝑧)
122118, 110, 121syl2anc 584 . . . . . . . . . . 11 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑥𝑧)
123122necomd 2983 . . . . . . . . . 10 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑧𝑥)
12411, 22, 12, 101, 119, 102, 103, 120, 123tgbtwnne 28463 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑥𝐵)
12511, 12, 27, 119, 103, 102, 101, 105, 120, 124, 123btwnhl1 28585 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑧((hlG‘𝐺)‘𝑥)𝐵)
12611, 22, 12, 14, 13, 100, 101, 27, 102, 103, 104, 117, 118, 125opphl 28727 . . . . . . 7 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝐵𝑂𝐶)
12799, 126pm2.61dan 812 . . . . . 6 ((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) → 𝐵𝑂𝐶)
128 simpr 484 . . . . . . 7 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝑦 ∈ (𝐵𝐼𝑑))
12911, 22, 12, 25, 29, 32, 63, 59, 38, 89, 128axtgpasch 28440 . . . . . 6 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴)))
130127, 129r19.29a 3140 . . . . 5 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝐵𝑂𝐶)
13111, 22, 12, 14, 31, 62islnopp 28712 . . . . . . . . 9 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → (𝐵𝑂𝑑 ↔ ((¬ 𝐵𝐷 ∧ ¬ 𝑑𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐵𝐼𝑑))))
13265, 131mpbid 232 . . . . . . . 8 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → ((¬ 𝐵𝐷 ∧ ¬ 𝑑𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐵𝐼𝑑)))
133132simprd 495 . . . . . . 7 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → ∃𝑡𝐷 𝑡 ∈ (𝐵𝐼𝑑))
134 eleq1w 2814 . . . . . . . 8 (𝑡 = 𝑦 → (𝑡 ∈ (𝐵𝐼𝑑) ↔ 𝑦 ∈ (𝐵𝐼𝑑)))
135134cbvrexvw 3211 . . . . . . 7 (∃𝑡𝐷 𝑡 ∈ (𝐵𝐼𝑑) ↔ ∃𝑦𝐷 𝑦 ∈ (𝐵𝐼𝑑))
136133, 135sylib 218 . . . . . 6 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → ∃𝑦𝐷 𝑦 ∈ (𝐵𝐼𝑑))
137136ad2antrr 726 . . . . 5 ((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) → ∃𝑦𝐷 𝑦 ∈ (𝐵𝐼𝑑))
138130, 137r19.29a 3140 . . . 4 ((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) → 𝐵𝑂𝐶)
13911, 22, 12, 14, 28, 62islnopp 28712 . . . . . . 7 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → (𝐴𝑂𝑑 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝑑𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑑))))
14083, 139mpbid 232 . . . . . 6 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → ((¬ 𝐴𝐷 ∧ ¬ 𝑑𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑑)))
141140simprd 495 . . . . 5 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑑))
142 eleq1w 2814 . . . . . 6 (𝑡 = 𝑥 → (𝑡 ∈ (𝐴𝐼𝑑) ↔ 𝑥 ∈ (𝐴𝐼𝑑)))
143142cbvrexvw 3211 . . . . 5 (∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑑) ↔ ∃𝑥𝐷 𝑥 ∈ (𝐴𝐼𝑑))
144141, 143sylib 218 . . . 4 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → ∃𝑥𝐷 𝑥 ∈ (𝐴𝐼𝑑))
145138, 144r19.29a 3140 . . 3 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → 𝐵𝑂𝐶)
14619biimpa 476 . . 3 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → ∃𝑑𝑃 (𝐴𝑂𝑑𝐵𝑂𝑑))
147145, 146r19.29a 3140 . 2 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → 𝐵𝑂𝐶)
14821, 147impbida 800 1 (𝜑 → (𝐵𝑂𝐶𝐴((hpG‘𝐺)‘𝐷)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  wrex 3056  cdif 3894   class class class wbr 5086  {copab 5148  ran crn 5612  cfv 6476  (class class class)co 7341  Basecbs 17115  distcds 17165  TarskiGcstrkg 28400  Itvcitv 28406  LineGclng 28407  hlGchlg 28573  hpGchpg 28730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-oadd 8384  df-er 8617  df-map 8747  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-dju 9789  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-xnn0 12450  df-z 12464  df-uz 12728  df-fz 13403  df-fzo 13550  df-hash 14233  df-word 14416  df-concat 14473  df-s1 14499  df-s2 14750  df-s3 14751  df-trkgc 28421  df-trkgb 28422  df-trkgcb 28423  df-trkgld 28425  df-trkg 28426  df-cgrg 28484  df-leg 28556  df-hlg 28574  df-mir 28626  df-rag 28667  df-perpg 28669  df-hpg 28731
This theorem is referenced by:  lnoppnhpg  28737  hpgtr  28741  colhp  28743  lnperpex  28776  trgcopyeulem  28778
  Copyright terms: Public domain W3C validator