MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnopp2hpgb Structured version   Visualization version   GIF version

Theorem lnopp2hpgb 27028
Description: Theorem 9.8 of [Schwabhauser] p. 71. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
ishpg.p 𝑃 = (Base‘𝐺)
ishpg.i 𝐼 = (Itv‘𝐺)
ishpg.l 𝐿 = (LineG‘𝐺)
ishpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
ishpg.g (𝜑𝐺 ∈ TarskiG)
ishpg.d (𝜑𝐷 ∈ ran 𝐿)
hpgbr.a (𝜑𝐴𝑃)
hpgbr.b (𝜑𝐵𝑃)
lnopp2hpgb.c (𝜑𝐶𝑃)
lnopp2hpgb.1 (𝜑𝐴𝑂𝐶)
Assertion
Ref Expression
lnopp2hpgb (𝜑 → (𝐵𝑂𝐶𝐴((hpG‘𝐺)‘𝐷)𝐵))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝐶,𝑎,𝑏,𝑡   𝐷,𝑎,𝑏,𝑡   𝐺,𝑎,𝑏,𝑡   𝐼,𝑎,𝑏,𝑡   𝐿,𝑎,𝑏,𝑡   𝑂,𝑎,𝑏,𝑡   𝑃,𝑎,𝑏,𝑡   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)

Proof of Theorem lnopp2hpgb
Dummy variables 𝑑 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnopp2hpgb.c . . . . 5 (𝜑𝐶𝑃)
21adantr 480 . . . 4 ((𝜑𝐵𝑂𝐶) → 𝐶𝑃)
3 lnopp2hpgb.1 . . . . 5 (𝜑𝐴𝑂𝐶)
43adantr 480 . . . 4 ((𝜑𝐵𝑂𝐶) → 𝐴𝑂𝐶)
5 simpr 484 . . . 4 ((𝜑𝐵𝑂𝐶) → 𝐵𝑂𝐶)
6 breq2 5074 . . . . . 6 (𝑑 = 𝐶 → (𝐴𝑂𝑑𝐴𝑂𝐶))
7 breq2 5074 . . . . . 6 (𝑑 = 𝐶 → (𝐵𝑂𝑑𝐵𝑂𝐶))
86, 7anbi12d 630 . . . . 5 (𝑑 = 𝐶 → ((𝐴𝑂𝑑𝐵𝑂𝑑) ↔ (𝐴𝑂𝐶𝐵𝑂𝐶)))
98rspcev 3552 . . . 4 ((𝐶𝑃 ∧ (𝐴𝑂𝐶𝐵𝑂𝐶)) → ∃𝑑𝑃 (𝐴𝑂𝑑𝐵𝑂𝑑))
102, 4, 5, 9syl12anc 833 . . 3 ((𝜑𝐵𝑂𝐶) → ∃𝑑𝑃 (𝐴𝑂𝑑𝐵𝑂𝑑))
11 ishpg.p . . . . 5 𝑃 = (Base‘𝐺)
12 ishpg.i . . . . 5 𝐼 = (Itv‘𝐺)
13 ishpg.l . . . . 5 𝐿 = (LineG‘𝐺)
14 ishpg.o . . . . 5 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
15 ishpg.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
16 ishpg.d . . . . 5 (𝜑𝐷 ∈ ran 𝐿)
17 hpgbr.a . . . . 5 (𝜑𝐴𝑃)
18 hpgbr.b . . . . 5 (𝜑𝐵𝑃)
1911, 12, 13, 14, 15, 16, 17, 18hpgbr 27025 . . . 4 (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑑𝑃 (𝐴𝑂𝑑𝐵𝑂𝑑)))
2019adantr 480 . . 3 ((𝜑𝐵𝑂𝐶) → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑑𝑃 (𝐴𝑂𝑑𝐵𝑂𝑑)))
2110, 20mpbird 256 . 2 ((𝜑𝐵𝑂𝐶) → 𝐴((hpG‘𝐺)‘𝐷)𝐵)
22 eqid 2738 . . . . . . . 8 (dist‘𝐺) = (dist‘𝐺)
2316ad7antr 734 . . . . . . . . 9 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝐷 ∈ ran 𝐿)
2423ad3antrrr 726 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐷 ∈ ran 𝐿)
2515ad7antr 734 . . . . . . . . 9 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝐺 ∈ TarskiG)
2625ad3antrrr 726 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐺 ∈ TarskiG)
27 eqid 2738 . . . . . . . 8 (hlG‘𝐺) = (hlG‘𝐺)
2817ad3antrrr 726 . . . . . . . . . 10 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → 𝐴𝑃)
2928ad4antr 728 . . . . . . . . 9 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝐴𝑃)
3029ad3antrrr 726 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐴𝑃)
3118ad3antrrr 726 . . . . . . . . . 10 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → 𝐵𝑃)
3231ad4antr 728 . . . . . . . . 9 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝐵𝑃)
3332ad3antrrr 726 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐵𝑃)
341ad10antr 740 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐶𝑃)
353ad10antr 740 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐴𝑂𝐶)
36 simpr 484 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧𝐷)
37 simplr 765 . . . . . . . . . . . . . . 15 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝑦𝐷)
3811, 13, 12, 25, 23, 37tglnpt 26814 . . . . . . . . . . . . . 14 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝑦𝑃)
3938ad3antrrr 726 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑦𝑃)
40 simp-5r 782 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑦𝐷)
4111, 22, 12, 14, 13, 24, 26, 30, 34, 35oppne1 27006 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → ¬ 𝐴𝐷)
42 nelne2 3041 . . . . . . . . . . . . . 14 ((𝑦𝐷 ∧ ¬ 𝐴𝐷) → 𝑦𝐴)
4340, 41, 42syl2anc 583 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑦𝐴)
4411, 12, 13, 26, 39, 30, 43tgelrnln 26895 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → (𝑦𝐿𝐴) ∈ ran 𝐿)
4511, 12, 13, 26, 39, 30, 43tglinerflx2 26899 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐴 ∈ (𝑦𝐿𝐴))
46 nelne1 3040 . . . . . . . . . . . . . 14 ((𝐴 ∈ (𝑦𝐿𝐴) ∧ ¬ 𝐴𝐷) → (𝑦𝐿𝐴) ≠ 𝐷)
4745, 41, 46syl2anc 583 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → (𝑦𝐿𝐴) ≠ 𝐷)
4847necomd 2998 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐷 ≠ (𝑦𝐿𝐴))
49 simpllr 772 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧𝑃)
50 simplrr 774 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 ∈ (𝑦𝐼𝐴))
5111, 12, 13, 26, 39, 30, 49, 43, 50btwnlng1 26884 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 ∈ (𝑦𝐿𝐴))
5236, 51elind 4124 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 ∈ (𝐷 ∩ (𝑦𝐿𝐴)))
5311, 12, 13, 26, 39, 30, 43tglinerflx1 26898 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑦 ∈ (𝑦𝐿𝐴))
5440, 53elind 4124 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑦 ∈ (𝐷 ∩ (𝑦𝐿𝐴)))
5511, 12, 13, 26, 24, 44, 48, 52, 54tglineineq 26908 . . . . . . . . . . 11 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 = 𝑦)
5655, 43eqnetrd 3010 . . . . . . . . . 10 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧𝐴)
5756necomd 2998 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐴𝑧)
58 simp-4r 780 . . . . . . . . . . . . . . 15 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝑥𝐷)
5911, 13, 12, 25, 23, 58tglnpt 26814 . . . . . . . . . . . . . 14 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝑥𝑃)
6059ad3antrrr 726 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑥𝑃)
61 simp-7r 786 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑥𝐷)
62 simplr 765 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → 𝑑𝑃)
6362ad4antr 728 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝑑𝑃)
6463ad3antrrr 726 . . . . . . . . . . . . . . 15 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑑𝑃)
65 simprr 769 . . . . . . . . . . . . . . . 16 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → 𝐵𝑂𝑑)
6665ad7antr 734 . . . . . . . . . . . . . . 15 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐵𝑂𝑑)
6711, 22, 12, 14, 13, 24, 26, 33, 64, 66oppne1 27006 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → ¬ 𝐵𝐷)
68 nelne2 3041 . . . . . . . . . . . . . 14 ((𝑥𝐷 ∧ ¬ 𝐵𝐷) → 𝑥𝐵)
6961, 67, 68syl2anc 583 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑥𝐵)
7011, 12, 13, 26, 60, 33, 69tgelrnln 26895 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → (𝑥𝐿𝐵) ∈ ran 𝐿)
7111, 12, 13, 26, 60, 33, 69tglinerflx2 26899 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐵 ∈ (𝑥𝐿𝐵))
72 nelne1 3040 . . . . . . . . . . . . . 14 ((𝐵 ∈ (𝑥𝐿𝐵) ∧ ¬ 𝐵𝐷) → (𝑥𝐿𝐵) ≠ 𝐷)
7371, 67, 72syl2anc 583 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → (𝑥𝐿𝐵) ≠ 𝐷)
7473necomd 2998 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐷 ≠ (𝑥𝐿𝐵))
75 simplrl 773 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 ∈ (𝑥𝐼𝐵))
7611, 12, 13, 26, 60, 33, 49, 69, 75btwnlng1 26884 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 ∈ (𝑥𝐿𝐵))
7736, 76elind 4124 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 ∈ (𝐷 ∩ (𝑥𝐿𝐵)))
7811, 12, 13, 26, 60, 33, 69tglinerflx1 26898 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑥 ∈ (𝑥𝐿𝐵))
7961, 78elind 4124 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑥 ∈ (𝐷 ∩ (𝑥𝐿𝐵)))
8011, 12, 13, 26, 24, 70, 74, 77, 79tglineineq 26908 . . . . . . . . . . 11 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 = 𝑥)
8180, 69eqnetrd 3010 . . . . . . . . . 10 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧𝐵)
8281necomd 2998 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐵𝑧)
83 simprl 767 . . . . . . . . . . . . . 14 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → 𝐴𝑂𝑑)
8483ad7antr 734 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐴𝑂𝑑)
8511, 22, 12, 14, 13, 24, 26, 30, 64, 84oppne2 27007 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → ¬ 𝑑𝐷)
86 nelne2 3041 . . . . . . . . . . . 12 ((𝑧𝐷 ∧ ¬ 𝑑𝐷) → 𝑧𝑑)
8736, 85, 86syl2anc 583 . . . . . . . . . . 11 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧𝑑)
8887necomd 2998 . . . . . . . . . 10 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑑𝑧)
89 simpllr 772 . . . . . . . . . . . . 13 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝑥 ∈ (𝐴𝐼𝑑))
9089ad3antrrr 726 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑥 ∈ (𝐴𝐼𝑑))
9111, 22, 12, 26, 30, 60, 64, 90tgbtwncom 26753 . . . . . . . . . . 11 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑥 ∈ (𝑑𝐼𝐴))
9280, 91eqeltrd 2839 . . . . . . . . . 10 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 ∈ (𝑑𝐼𝐴))
93 simp-4r 780 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑦 ∈ (𝐵𝐼𝑑))
9411, 22, 12, 26, 33, 39, 64, 93tgbtwncom 26753 . . . . . . . . . . 11 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑦 ∈ (𝑑𝐼𝐵))
9555, 94eqeltrd 2839 . . . . . . . . . 10 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 ∈ (𝑑𝐼𝐵))
9611, 12, 26, 64, 49, 30, 33, 88, 92, 95tgbtwnconn2 26841 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → (𝐴 ∈ (𝑧𝐼𝐵) ∨ 𝐵 ∈ (𝑧𝐼𝐴)))
9711, 12, 27, 30, 33, 49, 26ishlg 26867 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → (𝐴((hlG‘𝐺)‘𝑧)𝐵 ↔ (𝐴𝑧𝐵𝑧 ∧ (𝐴 ∈ (𝑧𝐼𝐵) ∨ 𝐵 ∈ (𝑧𝐼𝐴)))))
9857, 82, 96, 97mpbir3and 1340 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐴((hlG‘𝐺)‘𝑧)𝐵)
9911, 22, 12, 14, 13, 24, 26, 27, 30, 33, 34, 35, 36, 98opphl 27019 . . . . . . 7 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐵𝑂𝐶)
10023ad3antrrr 726 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝐷 ∈ ran 𝐿)
10125ad3antrrr 726 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝐺 ∈ TarskiG)
102 simpllr 772 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑧𝑃)
10332ad3antrrr 726 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝐵𝑃)
1041ad10antr 740 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝐶𝑃)
10529ad3antrrr 726 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝐴𝑃)
1063ad10antr 740 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝐴𝑂𝐶)
107 simp-5r 782 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑦𝐷)
10838ad3antrrr 726 . . . . . . . . . 10 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑦𝑃)
109 simplrr 774 . . . . . . . . . . 11 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑧 ∈ (𝑦𝐼𝐴))
110 simpr 484 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → ¬ 𝑧𝐷)
111 nelne2 3041 . . . . . . . . . . . . . 14 ((𝑦𝐷 ∧ ¬ 𝑧𝐷) → 𝑦𝑧)
112107, 110, 111syl2anc 583 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑦𝑧)
113112necomd 2998 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑧𝑦)
11411, 22, 12, 101, 108, 102, 105, 109, 113tgbtwnne 26755 . . . . . . . . . . 11 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑦𝐴)
11511, 12, 27, 108, 105, 102, 101, 105, 109, 114, 113btwnhl1 26877 . . . . . . . . . 10 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑧((hlG‘𝐺)‘𝑦)𝐴)
11611, 12, 27, 102, 105, 108, 101, 115hlcomd 26869 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝐴((hlG‘𝐺)‘𝑦)𝑧)
11711, 22, 12, 14, 13, 100, 101, 27, 105, 102, 104, 106, 107, 116opphl 27019 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑧𝑂𝐶)
11858ad3antrrr 726 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑥𝐷)
11959ad3antrrr 726 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑥𝑃)
120 simplrl 773 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑧 ∈ (𝑥𝐼𝐵))
121 nelne2 3041 . . . . . . . . . . . 12 ((𝑥𝐷 ∧ ¬ 𝑧𝐷) → 𝑥𝑧)
122118, 110, 121syl2anc 583 . . . . . . . . . . 11 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑥𝑧)
123122necomd 2998 . . . . . . . . . 10 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑧𝑥)
12411, 22, 12, 101, 119, 102, 103, 120, 123tgbtwnne 26755 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑥𝐵)
12511, 12, 27, 119, 103, 102, 101, 105, 120, 124, 123btwnhl1 26877 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑧((hlG‘𝐺)‘𝑥)𝐵)
12611, 22, 12, 14, 13, 100, 101, 27, 102, 103, 104, 117, 118, 125opphl 27019 . . . . . . 7 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝐵𝑂𝐶)
12799, 126pm2.61dan 809 . . . . . 6 ((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) → 𝐵𝑂𝐶)
128 simpr 484 . . . . . . 7 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝑦 ∈ (𝐵𝐼𝑑))
12911, 22, 12, 25, 29, 32, 63, 59, 38, 89, 128axtgpasch 26732 . . . . . 6 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴)))
130127, 129r19.29a 3217 . . . . 5 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝐵𝑂𝐶)
13111, 22, 12, 14, 31, 62islnopp 27004 . . . . . . . . 9 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → (𝐵𝑂𝑑 ↔ ((¬ 𝐵𝐷 ∧ ¬ 𝑑𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐵𝐼𝑑))))
13265, 131mpbid 231 . . . . . . . 8 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → ((¬ 𝐵𝐷 ∧ ¬ 𝑑𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐵𝐼𝑑)))
133132simprd 495 . . . . . . 7 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → ∃𝑡𝐷 𝑡 ∈ (𝐵𝐼𝑑))
134 eleq1w 2821 . . . . . . . 8 (𝑡 = 𝑦 → (𝑡 ∈ (𝐵𝐼𝑑) ↔ 𝑦 ∈ (𝐵𝐼𝑑)))
135134cbvrexvw 3373 . . . . . . 7 (∃𝑡𝐷 𝑡 ∈ (𝐵𝐼𝑑) ↔ ∃𝑦𝐷 𝑦 ∈ (𝐵𝐼𝑑))
136133, 135sylib 217 . . . . . 6 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → ∃𝑦𝐷 𝑦 ∈ (𝐵𝐼𝑑))
137136ad2antrr 722 . . . . 5 ((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) → ∃𝑦𝐷 𝑦 ∈ (𝐵𝐼𝑑))
138130, 137r19.29a 3217 . . . 4 ((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) → 𝐵𝑂𝐶)
13911, 22, 12, 14, 28, 62islnopp 27004 . . . . . . 7 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → (𝐴𝑂𝑑 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝑑𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑑))))
14083, 139mpbid 231 . . . . . 6 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → ((¬ 𝐴𝐷 ∧ ¬ 𝑑𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑑)))
141140simprd 495 . . . . 5 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑑))
142 eleq1w 2821 . . . . . 6 (𝑡 = 𝑥 → (𝑡 ∈ (𝐴𝐼𝑑) ↔ 𝑥 ∈ (𝐴𝐼𝑑)))
143142cbvrexvw 3373 . . . . 5 (∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑑) ↔ ∃𝑥𝐷 𝑥 ∈ (𝐴𝐼𝑑))
144141, 143sylib 217 . . . 4 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → ∃𝑥𝐷 𝑥 ∈ (𝐴𝐼𝑑))
145138, 144r19.29a 3217 . . 3 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → 𝐵𝑂𝐶)
14619biimpa 476 . . 3 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → ∃𝑑𝑃 (𝐴𝑂𝑑𝐵𝑂𝑑))
147145, 146r19.29a 3217 . 2 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → 𝐵𝑂𝐶)
14821, 147impbida 797 1 (𝜑 → (𝐵𝑂𝐶𝐴((hpG‘𝐺)‘𝐷)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  wrex 3064  cdif 3880   class class class wbr 5070  {copab 5132  ran crn 5581  cfv 6418  (class class class)co 7255  Basecbs 16840  distcds 16897  TarskiGcstrkg 26693  Itvcitv 26699  LineGclng 26700  hlGchlg 26865  hpGchpg 27022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-s2 14489  df-s3 14490  df-trkgc 26713  df-trkgb 26714  df-trkgcb 26715  df-trkgld 26717  df-trkg 26718  df-cgrg 26776  df-leg 26848  df-hlg 26866  df-mir 26918  df-rag 26959  df-perpg 26961  df-hpg 27023
This theorem is referenced by:  lnoppnhpg  27029  hpgtr  27033  colhp  27035  lnperpex  27068  trgcopyeulem  27070
  Copyright terms: Public domain W3C validator