MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  footexALT Structured version   Visualization version   GIF version

Theorem footexALT 28404
Description: Alternative version of footex 28407 which minimization requires a notably long time. (Contributed by Thierry Arnoux, 19-Oct-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
foot.x (𝜑𝐶𝑃)
foot.y (𝜑 → ¬ 𝐶𝐴)
Assertion
Ref Expression
footexALT (𝜑 → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝜑,𝑥   𝑥,𝐶   𝑥,𝐼   𝑥,   𝑥,𝐿   𝑥,𝑃

Proof of Theorem footexALT
Dummy variables 𝑎 𝑏 𝑑 𝑝 𝑞 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isperp.p . . . . . . . . 9 𝑃 = (Base‘𝐺)
2 isperp.d . . . . . . . . 9 = (dist‘𝐺)
3 isperp.i . . . . . . . . 9 𝐼 = (Itv‘𝐺)
4 isperp.l . . . . . . . . 9 𝐿 = (LineG‘𝐺)
5 eqid 2724 . . . . . . . . 9 (pInvG‘𝐺) = (pInvG‘𝐺)
6 isperp.g . . . . . . . . . . . . . . 15 (𝜑𝐺 ∈ TarskiG)
76ad3antrrr 727 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) → 𝐺 ∈ TarskiG)
87ad2antrr 723 . . . . . . . . . . . . 13 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → 𝐺 ∈ TarskiG)
98ad2antrr 723 . . . . . . . . . . . 12 ((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) → 𝐺 ∈ TarskiG)
109ad2antrr 723 . . . . . . . . . . 11 ((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) → 𝐺 ∈ TarskiG)
1110ad2antrr 723 . . . . . . . . . 10 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → 𝐺 ∈ TarskiG)
1211ad2antrr 723 . . . . . . . . 9 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝐺 ∈ TarskiG)
13 eqid 2724 . . . . . . . . 9 ((pInvG‘𝐺)‘𝑥) = ((pInvG‘𝐺)‘𝑥)
14 foot.x . . . . . . . . . . . . 13 (𝜑𝐶𝑃)
1514ad3antrrr 727 . . . . . . . . . . . 12 ((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) → 𝐶𝑃)
1615ad2antrr 723 . . . . . . . . . . 11 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → 𝐶𝑃)
1716ad6antr 733 . . . . . . . . . 10 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → 𝐶𝑃)
1817ad2antrr 723 . . . . . . . . 9 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝐶𝑃)
19 simplr 766 . . . . . . . . 9 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑑𝑃)
20 simp-4r 781 . . . . . . . . . . . 12 ((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) → 𝑦𝑃)
2120ad2antrr 723 . . . . . . . . . . 11 ((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) → 𝑦𝑃)
2221ad2antrr 723 . . . . . . . . . 10 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → 𝑦𝑃)
2322ad2antrr 723 . . . . . . . . 9 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑦𝑃)
24 simprr 770 . . . . . . . . . 10 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 𝑑) = (𝑦 𝐶))
2524eqcomd 2730 . . . . . . . . 9 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 𝐶) = (𝑦 𝑑))
261, 2, 3, 4, 5, 12, 13, 18, 19, 23, 25midexlem 28378 . . . . . . . 8 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → ∃𝑥𝑃 𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))
2712adantr 480 . . . . . . . . . 10 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐺 ∈ TarskiG)
2823adantr 480 . . . . . . . . . 10 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦𝑃)
29 simp-6r 785 . . . . . . . . . . 11 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑧𝑃)
3029adantr 480 . . . . . . . . . 10 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑧𝑃)
31 simprl 768 . . . . . . . . . 10 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑥𝑃)
32 simp-4r 781 . . . . . . . . . . . . 13 ((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) → 𝑝𝑃)
3332ad4antr 729 . . . . . . . . . . . 12 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑝𝑃)
3433adantr 480 . . . . . . . . . . 11 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑝𝑃)
35 simp-5r 783 . . . . . . . . . . . . . 14 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝)))
3635simprd 495 . . . . . . . . . . . . 13 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 𝑧) = (𝑦 𝑝))
3736eqcomd 2730 . . . . . . . . . . . 12 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 𝑝) = (𝑦 𝑧))
3837adantr 480 . . . . . . . . . . 11 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑦 𝑝) = (𝑦 𝑧))
39 simp-7r 787 . . . . . . . . . . . . . . 15 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦))
4039adantr 480 . . . . . . . . . . . . . 14 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦))
41 simpllr 773 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) → 𝑎𝑃)
4241ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → 𝑎𝑃)
4342ad2antrr 723 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) → 𝑎𝑃)
4443ad2antrr 723 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) → 𝑎𝑃)
4544ad4antr 729 . . . . . . . . . . . . . . . . . . 19 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑎𝑃)
46 simplr 766 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) → 𝑏𝑃)
4746ad10antr 741 . . . . . . . . . . . . . . . . . . 19 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑏𝑃)
48 simp-11r 795 . . . . . . . . . . . . . . . . . . . 20 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏))
4948simprd 495 . . . . . . . . . . . . . . . . . . 19 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑎𝑏)
5049necomd 2988 . . . . . . . . . . . . . . . . . . . 20 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑏𝑎)
51 simp-9r 791 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶)))
5251simpld 494 . . . . . . . . . . . . . . . . . . . 20 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑎 ∈ (𝑏𝐼𝑦))
531, 3, 4, 12, 47, 45, 23, 50, 52btwnlng3 28307 . . . . . . . . . . . . . . . . . . 19 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑦 ∈ (𝑏𝐿𝑎))
541, 3, 4, 12, 45, 47, 23, 49, 53lncom 28308 . . . . . . . . . . . . . . . . . 18 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑦 ∈ (𝑎𝐿𝑏))
5548simpld 494 . . . . . . . . . . . . . . . . . 18 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝐴 = (𝑎𝐿𝑏))
5654, 55eleqtrrd 2828 . . . . . . . . . . . . . . . . 17 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑦𝐴)
5756adantr 480 . . . . . . . . . . . . . . . 16 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦𝐴)
58 foot.y . . . . . . . . . . . . . . . . . . 19 (𝜑 → ¬ 𝐶𝐴)
5958ad3antrrr 727 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) → ¬ 𝐶𝐴)
6059ad10antr 741 . . . . . . . . . . . . . . . . 17 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → ¬ 𝐶𝐴)
6160adantr 480 . . . . . . . . . . . . . . . 16 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → ¬ 𝐶𝐴)
62 nelne2 3032 . . . . . . . . . . . . . . . 16 ((𝑦𝐴 ∧ ¬ 𝐶𝐴) → 𝑦𝐶)
6357, 61, 62syl2anc 583 . . . . . . . . . . . . . . 15 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦𝐶)
6463necomd 2988 . . . . . . . . . . . . . 14 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐶𝑦)
6540, 64eqnetrrd 3001 . . . . . . . . . . . . 13 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (((pInvG‘𝐺)‘𝑝)‘𝑦) ≠ 𝑦)
66 eqid 2724 . . . . . . . . . . . . . . 15 ((pInvG‘𝐺)‘𝑝) = ((pInvG‘𝐺)‘𝑝)
671, 2, 3, 4, 5, 27, 34, 66, 28mirinv 28352 . . . . . . . . . . . . . 14 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → ((((pInvG‘𝐺)‘𝑝)‘𝑦) = 𝑦𝑝 = 𝑦))
6867necon3bid 2977 . . . . . . . . . . . . 13 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → ((((pInvG‘𝐺)‘𝑝)‘𝑦) ≠ 𝑦𝑝𝑦))
6965, 68mpbid 231 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑝𝑦)
7069necomd 2988 . . . . . . . . . . 11 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦𝑝)
711, 2, 3, 27, 28, 34, 28, 30, 38, 70tgcgrneq 28169 . . . . . . . . . 10 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦𝑧)
7271necomd 2988 . . . . . . . . . . 11 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑧𝑦)
73 eqid 2724 . . . . . . . . . . . 12 ((pInvG‘𝐺)‘𝑧) = ((pInvG‘𝐺)‘𝑧)
74 simp-4r 781 . . . . . . . . . . . . 13 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑞𝑃)
7574adantr 480 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑞𝑃)
76 simp-4r 781 . . . . . . . . . . . . . 14 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → 𝑧𝑃)
77 simplr 766 . . . . . . . . . . . . . 14 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → 𝑞𝑃)
781, 2, 3, 4, 5, 11, 76, 73, 77mircl 28347 . . . . . . . . . . . . 13 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → (((pInvG‘𝐺)‘𝑧)‘𝑞) ∈ 𝑃)
7978ad3antrrr 727 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (((pInvG‘𝐺)‘𝑧)‘𝑞) ∈ 𝑃)
8018adantr 480 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐶𝑃)
81 simpllr 773 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑑𝑃)
821, 2, 3, 4, 5, 27, 34, 66, 28mirbtwn 28344 . . . . . . . . . . . . . . 15 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑝 ∈ ((((pInvG‘𝐺)‘𝑝)‘𝑦)𝐼𝑦))
8340oveq1d 7416 . . . . . . . . . . . . . . 15 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝐶𝐼𝑦) = ((((pInvG‘𝐺)‘𝑝)‘𝑦)𝐼𝑦))
8482, 83eleqtrrd 2828 . . . . . . . . . . . . . 14 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑝 ∈ (𝐶𝐼𝑦))
85 simpllr 773 . . . . . . . . . . . . . . . 16 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎)))
8685simpld 494 . . . . . . . . . . . . . . 15 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑦 ∈ (𝑝𝐼𝑞))
8786adantr 480 . . . . . . . . . . . . . 14 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦 ∈ (𝑝𝐼𝑞))
881, 2, 3, 27, 80, 34, 28, 75, 69, 84, 87tgbtwnouttr2 28181 . . . . . . . . . . . . 13 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦 ∈ (𝐶𝐼𝑞))
891, 2, 3, 27, 80, 28, 75, 88tgbtwncom 28174 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦 ∈ (𝑞𝐼𝐶))
90 simplrl 774 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑))
91 eqid 2724 . . . . . . . . . . . . . . . 16 (cgrG‘𝐺) = (cgrG‘𝐺)
9251simprd 495 . . . . . . . . . . . . . . . . . 18 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑎 𝑦) = (𝑎 𝐶))
9339oveq2d 7417 . . . . . . . . . . . . . . . . . 18 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑎 𝐶) = (𝑎 (((pInvG‘𝐺)‘𝑝)‘𝑦)))
9492, 93eqtrd 2764 . . . . . . . . . . . . . . . . 17 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑎 𝑦) = (𝑎 (((pInvG‘𝐺)‘𝑝)‘𝑦)))
951, 2, 3, 4, 5, 12, 45, 33, 23israg 28383 . . . . . . . . . . . . . . . . 17 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (⟨“𝑎𝑝𝑦”⟩ ∈ (∟G‘𝐺) ↔ (𝑎 𝑦) = (𝑎 (((pInvG‘𝐺)‘𝑝)‘𝑦))))
9694, 95mpbird 257 . . . . . . . . . . . . . . . 16 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → ⟨“𝑎𝑝𝑦”⟩ ∈ (∟G‘𝐺))
9785simprd 495 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 𝑞) = (𝑦 𝑎))
981, 2, 3, 12, 45, 23, 45, 18, 92tgcgrcomlr 28166 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 𝑎) = (𝐶 𝑎))
9997, 98eqtr2d 2765 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝐶 𝑎) = (𝑦 𝑞))
1001, 3, 4, 12, 45, 47, 49tglinerflx1 28319 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑎 ∈ (𝑎𝐿𝑏))
101100, 55eleqtrrd 2828 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑎𝐴)
102 nelne2 3032 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎𝐴 ∧ ¬ 𝐶𝐴) → 𝑎𝐶)
103101, 60, 102syl2anc 583 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑎𝐶)
104103necomd 2988 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝐶𝑎)
1051, 2, 3, 12, 18, 45, 23, 74, 99, 104tgcgrneq 28169 . . . . . . . . . . . . . . . . . . . 20 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑦𝑞)
106105necomd 2988 . . . . . . . . . . . . . . . . . . 19 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑞𝑦)
1071, 2, 3, 12, 33, 23, 74, 86tgbtwncom 28174 . . . . . . . . . . . . . . . . . . 19 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑦 ∈ (𝑞𝐼𝑝))
10835simpld 494 . . . . . . . . . . . . . . . . . . 19 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑦 ∈ (𝑎𝐼𝑧))
1091, 2, 3, 12, 23, 74, 23, 45, 97tgcgrcomlr 28166 . . . . . . . . . . . . . . . . . . 19 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑞 𝑦) = (𝑎 𝑦))
1101, 2, 3, 12, 74, 45axtgcgrrflx 28148 . . . . . . . . . . . . . . . . . . 19 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑞 𝑎) = (𝑎 𝑞))
11197eqcomd 2730 . . . . . . . . . . . . . . . . . . 19 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 𝑎) = (𝑦 𝑞))
1121, 2, 3, 12, 74, 23, 33, 45, 23, 29, 45, 74, 106, 107, 108, 109, 37, 110, 111axtg5seg 28151 . . . . . . . . . . . . . . . . . 18 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑝 𝑎) = (𝑧 𝑞))
1131, 2, 3, 12, 33, 45, 29, 74, 112tgcgrcomlr 28166 . . . . . . . . . . . . . . . . 17 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑎 𝑝) = (𝑞 𝑧))
1141, 2, 3, 12, 23, 33, 23, 29, 37tgcgrcomlr 28166 . . . . . . . . . . . . . . . . 17 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑝 𝑦) = (𝑧 𝑦))
1151, 2, 91, 12, 45, 33, 23, 74, 29, 23, 113, 114, 111trgcgr 28202 . . . . . . . . . . . . . . . 16 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → ⟨“𝑎𝑝𝑦”⟩(cgrG‘𝐺)⟨“𝑞𝑧𝑦”⟩)
1161, 2, 3, 4, 5, 12, 45, 33, 23, 91, 74, 29, 23, 96, 115ragcgr 28393 . . . . . . . . . . . . . . 15 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → ⟨“𝑞𝑧𝑦”⟩ ∈ (∟G‘𝐺))
1171, 2, 3, 4, 5, 12, 74, 29, 23, 116ragcom 28384 . . . . . . . . . . . . . 14 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → ⟨“𝑦𝑧𝑞”⟩ ∈ (∟G‘𝐺))
1181, 2, 3, 4, 5, 12, 23, 29, 74israg 28383 . . . . . . . . . . . . . 14 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (⟨“𝑦𝑧𝑞”⟩ ∈ (∟G‘𝐺) ↔ (𝑦 𝑞) = (𝑦 (((pInvG‘𝐺)‘𝑧)‘𝑞))))
119117, 118mpbid 231 . . . . . . . . . . . . 13 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 𝑞) = (𝑦 (((pInvG‘𝐺)‘𝑧)‘𝑞)))
120119adantr 480 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑦 𝑞) = (𝑦 (((pInvG‘𝐺)‘𝑧)‘𝑞)))
12125adantr 480 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑦 𝐶) = (𝑦 𝑑))
122 eqidd 2725 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (((pInvG‘𝐺)‘𝑧)‘𝑞) = (((pInvG‘𝐺)‘𝑧)‘𝑞))
123 simprr 770 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))
1241, 2, 3, 4, 5, 27, 73, 13, 75, 79, 28, 80, 81, 30, 31, 89, 90, 120, 121, 122, 123krippen 28377 . . . . . . . . . . 11 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦 ∈ (𝑧𝐼𝑥))
1251, 3, 4, 27, 30, 28, 31, 72, 124btwnlng3 28307 . . . . . . . . . 10 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑥 ∈ (𝑧𝐿𝑦))
1261, 3, 4, 27, 28, 30, 31, 71, 125lncom 28308 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑥 ∈ (𝑦𝐿𝑧))
127 isperp.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ran 𝐿)
128127ad5antr 731 . . . . . . . . . . 11 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → 𝐴 ∈ ran 𝐿)
129128ad9antr 739 . . . . . . . . . 10 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐴 ∈ ran 𝐿)
13045adantr 480 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑎𝑃)
13192adantr 480 . . . . . . . . . . . . . 14 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑎 𝑦) = (𝑎 𝐶))
132131eqcomd 2730 . . . . . . . . . . . . 13 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑎 𝐶) = (𝑎 𝑦))
133103adantr 480 . . . . . . . . . . . . 13 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑎𝐶)
1341, 2, 3, 27, 130, 80, 130, 28, 132, 133tgcgrneq 28169 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑎𝑦)
135108adantr 480 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦 ∈ (𝑎𝐼𝑧))
1361, 3, 4, 27, 130, 28, 30, 134, 135btwnlng3 28307 . . . . . . . . . . 11 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑧 ∈ (𝑎𝐿𝑦))
137101adantr 480 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑎𝐴)
1381, 3, 4, 27, 130, 28, 134, 134, 129, 137, 57tglinethru 28322 . . . . . . . . . . 11 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐴 = (𝑎𝐿𝑦))
139136, 138eleqtrrd 2828 . . . . . . . . . 10 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑧𝐴)
1401, 3, 4, 27, 28, 30, 71, 71, 129, 57, 139tglinethru 28322 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐴 = (𝑦𝐿𝑧))
141126, 140eleqtrrd 2828 . . . . . . . 8 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑥𝐴)
142 nelne2 3032 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ ¬ 𝐶𝐴) → 𝑥𝐶)
143141, 61, 142syl2anc 583 . . . . . . . . . . 11 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑥𝐶)
144143necomd 2988 . . . . . . . . . 10 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐶𝑥)
1451, 3, 4, 27, 80, 31, 144tgelrnln 28316 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝐶𝐿𝑥) ∈ ran 𝐿)
1461, 3, 4, 27, 80, 31, 144tglinerflx2 28320 . . . . . . . . . 10 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑥 ∈ (𝐶𝐿𝑥))
147146, 141elind 4186 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑥 ∈ ((𝐶𝐿𝑥) ∩ 𝐴))
1481, 3, 4, 27, 80, 31, 144tglinerflx1 28319 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐶 ∈ (𝐶𝐿𝑥))
14927adantr 480 . . . . . . . . . . . 12 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝐺 ∈ TarskiG)
150130adantr 480 . . . . . . . . . . . 12 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑎𝑃)
15128adantr 480 . . . . . . . . . . . 12 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑦𝑃)
15234adantr 480 . . . . . . . . . . . 12 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑝𝑃)
15380adantr 480 . . . . . . . . . . . . . 14 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝐶𝑃)
154 eqidd 2725 . . . . . . . . . . . . . . . 16 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝐶 = 𝐶)
155 simpr 484 . . . . . . . . . . . . . . . 16 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
156 eqidd 2725 . . . . . . . . . . . . . . . 16 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑎 = 𝑎)
157154, 155, 156s3eqd 14811 . . . . . . . . . . . . . . 15 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → ⟨“𝐶𝑦𝑎”⟩ = ⟨“𝐶𝑥𝑎”⟩)
15831adantr 480 . . . . . . . . . . . . . . . 16 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑥𝑃)
15930adantr 480 . . . . . . . . . . . . . . . . 17 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑧𝑃)
160106adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑞𝑦)
1611, 2, 3, 27, 28, 75, 28, 79, 120tgcgrcomlr 28166 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑞 𝑦) = ((((pInvG‘𝐺)‘𝑧)‘𝑞) 𝑦))
1621, 2, 3, 4, 5, 27, 30, 73, 75mircgr 28343 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑧 (((pInvG‘𝐺)‘𝑧)‘𝑞)) = (𝑧 𝑞))
163162eqcomd 2730 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑧 𝑞) = (𝑧 (((pInvG‘𝐺)‘𝑧)‘𝑞)))
1641, 2, 3, 27, 30, 75, 30, 79, 163tgcgrcomlr 28166 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑞 𝑧) = ((((pInvG‘𝐺)‘𝑧)‘𝑞) 𝑧))
165 eqidd 2725 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑦 𝑧) = (𝑦 𝑧))
1661, 2, 3, 27, 75, 28, 80, 79, 28, 81, 30, 30, 160, 89, 90, 161, 121, 164, 165axtg5seg 28151 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝐶 𝑧) = (𝑑 𝑧))
1671, 2, 3, 27, 80, 30, 81, 30, 166tgcgrcomlr 28166 . . . . . . . . . . . . . . . . . . . 20 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑧 𝐶) = (𝑧 𝑑))
168123oveq2d 7417 . . . . . . . . . . . . . . . . . . . 20 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑧 𝑑) = (𝑧 (((pInvG‘𝐺)‘𝑥)‘𝐶)))
169167, 168eqtrd 2764 . . . . . . . . . . . . . . . . . . 19 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑧 𝐶) = (𝑧 (((pInvG‘𝐺)‘𝑥)‘𝐶)))
1701, 2, 3, 4, 5, 27, 30, 31, 80israg 28383 . . . . . . . . . . . . . . . . . . 19 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (⟨“𝑧𝑥𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝑧 𝐶) = (𝑧 (((pInvG‘𝐺)‘𝑥)‘𝐶))))
171169, 170mpbird 257 . . . . . . . . . . . . . . . . . 18 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → ⟨“𝑧𝑥𝐶”⟩ ∈ (∟G‘𝐺))
172171adantr 480 . . . . . . . . . . . . . . . . 17 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → ⟨“𝑧𝑥𝐶”⟩ ∈ (∟G‘𝐺))
17372adantr 480 . . . . . . . . . . . . . . . . . 18 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑧𝑦)
174173, 155neeqtrd 3002 . . . . . . . . . . . . . . . . 17 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑧𝑥)
175132adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → (𝑎 𝐶) = (𝑎 𝑦))
176133adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑎𝐶)
1771, 2, 3, 149, 150, 153, 150, 151, 175, 176tgcgrneq 28169 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑎𝑦)
178177necomd 2988 . . . . . . . . . . . . . . . . . . . 20 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑦𝑎)
179136adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑧 ∈ (𝑎𝐿𝑦))
1801, 3, 4, 149, 151, 150, 159, 178, 179lncom 28308 . . . . . . . . . . . . . . . . . . 19 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑧 ∈ (𝑦𝐿𝑎))
181155oveq1d 7416 . . . . . . . . . . . . . . . . . . 19 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → (𝑦𝐿𝑎) = (𝑥𝐿𝑎))
182180, 181eleqtrd 2827 . . . . . . . . . . . . . . . . . 18 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑧 ∈ (𝑥𝐿𝑎))
183182orcd 870 . . . . . . . . . . . . . . . . 17 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → (𝑧 ∈ (𝑥𝐿𝑎) ∨ 𝑥 = 𝑎))
1841, 2, 3, 4, 5, 149, 159, 158, 153, 150, 172, 174, 183ragcol 28385 . . . . . . . . . . . . . . . 16 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → ⟨“𝑎𝑥𝐶”⟩ ∈ (∟G‘𝐺))
1851, 2, 3, 4, 5, 149, 150, 158, 153, 184ragcom 28384 . . . . . . . . . . . . . . 15 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → ⟨“𝐶𝑥𝑎”⟩ ∈ (∟G‘𝐺))
186157, 185eqeltrd 2825 . . . . . . . . . . . . . 14 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → ⟨“𝐶𝑦𝑎”⟩ ∈ (∟G‘𝐺))
18764adantr 480 . . . . . . . . . . . . . 14 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝐶𝑦)
1881, 2, 3, 27, 80, 34, 28, 84tgbtwncom 28174 . . . . . . . . . . . . . . . 16 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑝 ∈ (𝑦𝐼𝐶))
1891, 4, 3, 27, 28, 34, 80, 188btwncolg3 28243 . . . . . . . . . . . . . . 15 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝐶 ∈ (𝑦𝐿𝑝) ∨ 𝑦 = 𝑝))
190189adantr 480 . . . . . . . . . . . . . 14 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → (𝐶 ∈ (𝑦𝐿𝑝) ∨ 𝑦 = 𝑝))
1911, 2, 3, 4, 5, 149, 153, 151, 150, 152, 186, 187, 190ragcol 28385 . . . . . . . . . . . . 13 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → ⟨“𝑝𝑦𝑎”⟩ ∈ (∟G‘𝐺))
1921, 2, 3, 4, 5, 149, 152, 151, 150, 191ragcom 28384 . . . . . . . . . . . 12 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → ⟨“𝑎𝑦𝑝”⟩ ∈ (∟G‘𝐺))
19396ad2antrr 723 . . . . . . . . . . . 12 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → ⟨“𝑎𝑝𝑦”⟩ ∈ (∟G‘𝐺))
1941, 2, 3, 4, 5, 149, 150, 151, 152, 192, 193ragflat 28390 . . . . . . . . . . 11 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑝)
19570adantr 480 . . . . . . . . . . . 12 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑦𝑝)
196195neneqd 2937 . . . . . . . . . . 11 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → ¬ 𝑦 = 𝑝)
197194, 196pm2.65da 814 . . . . . . . . . 10 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → ¬ 𝑦 = 𝑥)
198197neqned 2939 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦𝑥)
199123oveq2d 7417 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑦 𝑑) = (𝑦 (((pInvG‘𝐺)‘𝑥)‘𝐶)))
200121, 199eqtrd 2764 . . . . . . . . . . 11 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑦 𝐶) = (𝑦 (((pInvG‘𝐺)‘𝑥)‘𝐶)))
2011, 2, 3, 4, 5, 27, 28, 31, 80israg 28383 . . . . . . . . . . 11 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (⟨“𝑦𝑥𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝑦 𝐶) = (𝑦 (((pInvG‘𝐺)‘𝑥)‘𝐶))))
202200, 201mpbird 257 . . . . . . . . . 10 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → ⟨“𝑦𝑥𝐶”⟩ ∈ (∟G‘𝐺))
2031, 2, 3, 4, 5, 27, 28, 31, 80, 202ragcom 28384 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → ⟨“𝐶𝑥𝑦”⟩ ∈ (∟G‘𝐺))
2041, 2, 3, 4, 27, 145, 129, 147, 148, 57, 144, 198, 203ragperp 28403 . . . . . . . 8 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
20526, 141, 204reximssdv 3164 . . . . . . 7 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
2061, 2, 3, 11, 78, 22, 22, 17axtgsegcon 28150 . . . . . . 7 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → ∃𝑑𝑃 (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶)))
207205, 206r19.29a 3154 . . . . . 6 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
2081, 2, 3, 10, 32, 21, 21, 44axtgsegcon 28150 . . . . . 6 ((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) → ∃𝑞𝑃 (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎)))
209207, 208r19.29a 3154 . . . . 5 ((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
210 simplr 766 . . . . . 6 ((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) → 𝑝𝑃)
2111, 2, 3, 9, 43, 20, 20, 210axtgsegcon 28150 . . . . 5 ((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) → ∃𝑧𝑃 (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝)))
212209, 211r19.29a 3154 . . . 4 ((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
213 simplr 766 . . . . 5 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → 𝑦𝑃)
214 simprr 770 . . . . 5 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → (𝑎 𝑦) = (𝑎 𝐶))
2151, 2, 3, 4, 5, 8, 66, 213, 16, 42, 214midexlem 28378 . . . 4 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → ∃𝑝𝑃 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦))
216212, 215r19.29a 3154 . . 3 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
2171, 2, 3, 7, 46, 41, 41, 15axtgsegcon 28150 . . 3 ((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) → ∃𝑦𝑃 (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶)))
218216, 217r19.29a 3154 . 2 ((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
2191, 3, 4, 6, 127tgisline 28313 . 2 (𝜑 → ∃𝑎𝑃𝑏𝑃 (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏))
220218, 219r19.29vva 3205 1 (𝜑 → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 844   = wceq 1533  wcel 2098  wne 2932  wrex 3062   class class class wbr 5138  ran crn 5667  cfv 6533  (class class class)co 7401  ⟨“cs3 14789  Basecbs 17142  distcds 17204  TarskiGcstrkg 28113  Itvcitv 28119  LineGclng 28120  cgrGccgrg 28196  pInvGcmir 28338  ∟Gcrag 28379  ⟂Gcperpg 28381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-oadd 8465  df-er 8698  df-map 8817  df-pm 8818  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-dju 9891  df-card 9929  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-concat 14517  df-s1 14542  df-s2 14795  df-s3 14796  df-trkgc 28134  df-trkgb 28135  df-trkgcb 28136  df-trkg 28139  df-cgrg 28197  df-leg 28269  df-mir 28339  df-rag 28380  df-perpg 28382
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator