MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  footexALT Structured version   Visualization version   GIF version

Theorem footexALT 26983
Description: Alternative version of footex 26986 which minimization requires a notably long time. (Contributed by Thierry Arnoux, 19-Oct-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
foot.x (𝜑𝐶𝑃)
foot.y (𝜑 → ¬ 𝐶𝐴)
Assertion
Ref Expression
footexALT (𝜑 → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝜑,𝑥   𝑥,𝐶   𝑥,𝐼   𝑥,   𝑥,𝐿   𝑥,𝑃

Proof of Theorem footexALT
Dummy variables 𝑎 𝑏 𝑑 𝑝 𝑞 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isperp.p . . . . . . . . 9 𝑃 = (Base‘𝐺)
2 isperp.d . . . . . . . . 9 = (dist‘𝐺)
3 isperp.i . . . . . . . . 9 𝐼 = (Itv‘𝐺)
4 isperp.l . . . . . . . . 9 𝐿 = (LineG‘𝐺)
5 eqid 2738 . . . . . . . . 9 (pInvG‘𝐺) = (pInvG‘𝐺)
6 isperp.g . . . . . . . . . . . . . . 15 (𝜑𝐺 ∈ TarskiG)
76ad3antrrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) → 𝐺 ∈ TarskiG)
87ad2antrr 722 . . . . . . . . . . . . 13 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → 𝐺 ∈ TarskiG)
98ad2antrr 722 . . . . . . . . . . . 12 ((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) → 𝐺 ∈ TarskiG)
109ad2antrr 722 . . . . . . . . . . 11 ((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) → 𝐺 ∈ TarskiG)
1110ad2antrr 722 . . . . . . . . . 10 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → 𝐺 ∈ TarskiG)
1211ad2antrr 722 . . . . . . . . 9 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝐺 ∈ TarskiG)
13 eqid 2738 . . . . . . . . 9 ((pInvG‘𝐺)‘𝑥) = ((pInvG‘𝐺)‘𝑥)
14 foot.x . . . . . . . . . . . . 13 (𝜑𝐶𝑃)
1514ad3antrrr 726 . . . . . . . . . . . 12 ((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) → 𝐶𝑃)
1615ad2antrr 722 . . . . . . . . . . 11 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → 𝐶𝑃)
1716ad6antr 732 . . . . . . . . . 10 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → 𝐶𝑃)
1817ad2antrr 722 . . . . . . . . 9 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝐶𝑃)
19 simplr 765 . . . . . . . . 9 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑑𝑃)
20 simp-4r 780 . . . . . . . . . . . 12 ((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) → 𝑦𝑃)
2120ad2antrr 722 . . . . . . . . . . 11 ((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) → 𝑦𝑃)
2221ad2antrr 722 . . . . . . . . . 10 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → 𝑦𝑃)
2322ad2antrr 722 . . . . . . . . 9 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑦𝑃)
24 simprr 769 . . . . . . . . . 10 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 𝑑) = (𝑦 𝐶))
2524eqcomd 2744 . . . . . . . . 9 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 𝐶) = (𝑦 𝑑))
261, 2, 3, 4, 5, 12, 13, 18, 19, 23, 25midexlem 26957 . . . . . . . 8 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → ∃𝑥𝑃 𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))
2712adantr 480 . . . . . . . . . 10 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐺 ∈ TarskiG)
2823adantr 480 . . . . . . . . . 10 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦𝑃)
29 simp-6r 784 . . . . . . . . . . 11 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑧𝑃)
3029adantr 480 . . . . . . . . . 10 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑧𝑃)
31 simprl 767 . . . . . . . . . 10 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑥𝑃)
32 simp-4r 780 . . . . . . . . . . . . 13 ((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) → 𝑝𝑃)
3332ad4antr 728 . . . . . . . . . . . 12 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑝𝑃)
3433adantr 480 . . . . . . . . . . 11 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑝𝑃)
35 simp-5r 782 . . . . . . . . . . . . . 14 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝)))
3635simprd 495 . . . . . . . . . . . . 13 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 𝑧) = (𝑦 𝑝))
3736eqcomd 2744 . . . . . . . . . . . 12 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 𝑝) = (𝑦 𝑧))
3837adantr 480 . . . . . . . . . . 11 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑦 𝑝) = (𝑦 𝑧))
39 simp-7r 786 . . . . . . . . . . . . . . 15 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦))
4039adantr 480 . . . . . . . . . . . . . 14 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦))
41 simpllr 772 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) → 𝑎𝑃)
4241ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → 𝑎𝑃)
4342ad2antrr 722 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) → 𝑎𝑃)
4443ad2antrr 722 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) → 𝑎𝑃)
4544ad4antr 728 . . . . . . . . . . . . . . . . . . 19 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑎𝑃)
46 simplr 765 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) → 𝑏𝑃)
4746ad10antr 740 . . . . . . . . . . . . . . . . . . 19 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑏𝑃)
48 simp-11r 794 . . . . . . . . . . . . . . . . . . . 20 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏))
4948simprd 495 . . . . . . . . . . . . . . . . . . 19 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑎𝑏)
5049necomd 2998 . . . . . . . . . . . . . . . . . . . 20 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑏𝑎)
51 simp-9r 790 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶)))
5251simpld 494 . . . . . . . . . . . . . . . . . . . 20 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑎 ∈ (𝑏𝐼𝑦))
531, 3, 4, 12, 47, 45, 23, 50, 52btwnlng3 26886 . . . . . . . . . . . . . . . . . . 19 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑦 ∈ (𝑏𝐿𝑎))
541, 3, 4, 12, 45, 47, 23, 49, 53lncom 26887 . . . . . . . . . . . . . . . . . 18 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑦 ∈ (𝑎𝐿𝑏))
5548simpld 494 . . . . . . . . . . . . . . . . . 18 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝐴 = (𝑎𝐿𝑏))
5654, 55eleqtrrd 2842 . . . . . . . . . . . . . . . . 17 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑦𝐴)
5756adantr 480 . . . . . . . . . . . . . . . 16 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦𝐴)
58 foot.y . . . . . . . . . . . . . . . . . . 19 (𝜑 → ¬ 𝐶𝐴)
5958ad3antrrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) → ¬ 𝐶𝐴)
6059ad10antr 740 . . . . . . . . . . . . . . . . 17 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → ¬ 𝐶𝐴)
6160adantr 480 . . . . . . . . . . . . . . . 16 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → ¬ 𝐶𝐴)
62 nelne2 3041 . . . . . . . . . . . . . . . 16 ((𝑦𝐴 ∧ ¬ 𝐶𝐴) → 𝑦𝐶)
6357, 61, 62syl2anc 583 . . . . . . . . . . . . . . 15 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦𝐶)
6463necomd 2998 . . . . . . . . . . . . . 14 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐶𝑦)
6540, 64eqnetrrd 3011 . . . . . . . . . . . . 13 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (((pInvG‘𝐺)‘𝑝)‘𝑦) ≠ 𝑦)
66 eqid 2738 . . . . . . . . . . . . . . 15 ((pInvG‘𝐺)‘𝑝) = ((pInvG‘𝐺)‘𝑝)
671, 2, 3, 4, 5, 27, 34, 66, 28mirinv 26931 . . . . . . . . . . . . . 14 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → ((((pInvG‘𝐺)‘𝑝)‘𝑦) = 𝑦𝑝 = 𝑦))
6867necon3bid 2987 . . . . . . . . . . . . 13 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → ((((pInvG‘𝐺)‘𝑝)‘𝑦) ≠ 𝑦𝑝𝑦))
6965, 68mpbid 231 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑝𝑦)
7069necomd 2998 . . . . . . . . . . 11 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦𝑝)
711, 2, 3, 27, 28, 34, 28, 30, 38, 70tgcgrneq 26748 . . . . . . . . . 10 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦𝑧)
7271necomd 2998 . . . . . . . . . . 11 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑧𝑦)
73 eqid 2738 . . . . . . . . . . . 12 ((pInvG‘𝐺)‘𝑧) = ((pInvG‘𝐺)‘𝑧)
74 simp-4r 780 . . . . . . . . . . . . 13 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑞𝑃)
7574adantr 480 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑞𝑃)
76 simp-4r 780 . . . . . . . . . . . . . 14 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → 𝑧𝑃)
77 simplr 765 . . . . . . . . . . . . . 14 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → 𝑞𝑃)
781, 2, 3, 4, 5, 11, 76, 73, 77mircl 26926 . . . . . . . . . . . . 13 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → (((pInvG‘𝐺)‘𝑧)‘𝑞) ∈ 𝑃)
7978ad3antrrr 726 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (((pInvG‘𝐺)‘𝑧)‘𝑞) ∈ 𝑃)
8018adantr 480 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐶𝑃)
81 simpllr 772 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑑𝑃)
821, 2, 3, 4, 5, 27, 34, 66, 28mirbtwn 26923 . . . . . . . . . . . . . . 15 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑝 ∈ ((((pInvG‘𝐺)‘𝑝)‘𝑦)𝐼𝑦))
8340oveq1d 7270 . . . . . . . . . . . . . . 15 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝐶𝐼𝑦) = ((((pInvG‘𝐺)‘𝑝)‘𝑦)𝐼𝑦))
8482, 83eleqtrrd 2842 . . . . . . . . . . . . . 14 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑝 ∈ (𝐶𝐼𝑦))
85 simpllr 772 . . . . . . . . . . . . . . . 16 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎)))
8685simpld 494 . . . . . . . . . . . . . . 15 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑦 ∈ (𝑝𝐼𝑞))
8786adantr 480 . . . . . . . . . . . . . 14 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦 ∈ (𝑝𝐼𝑞))
881, 2, 3, 27, 80, 34, 28, 75, 69, 84, 87tgbtwnouttr2 26760 . . . . . . . . . . . . 13 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦 ∈ (𝐶𝐼𝑞))
891, 2, 3, 27, 80, 28, 75, 88tgbtwncom 26753 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦 ∈ (𝑞𝐼𝐶))
90 simplrl 773 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑))
91 eqid 2738 . . . . . . . . . . . . . . . 16 (cgrG‘𝐺) = (cgrG‘𝐺)
9251simprd 495 . . . . . . . . . . . . . . . . . 18 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑎 𝑦) = (𝑎 𝐶))
9339oveq2d 7271 . . . . . . . . . . . . . . . . . 18 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑎 𝐶) = (𝑎 (((pInvG‘𝐺)‘𝑝)‘𝑦)))
9492, 93eqtrd 2778 . . . . . . . . . . . . . . . . 17 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑎 𝑦) = (𝑎 (((pInvG‘𝐺)‘𝑝)‘𝑦)))
951, 2, 3, 4, 5, 12, 45, 33, 23israg 26962 . . . . . . . . . . . . . . . . 17 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (⟨“𝑎𝑝𝑦”⟩ ∈ (∟G‘𝐺) ↔ (𝑎 𝑦) = (𝑎 (((pInvG‘𝐺)‘𝑝)‘𝑦))))
9694, 95mpbird 256 . . . . . . . . . . . . . . . 16 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → ⟨“𝑎𝑝𝑦”⟩ ∈ (∟G‘𝐺))
9785simprd 495 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 𝑞) = (𝑦 𝑎))
981, 2, 3, 12, 45, 23, 45, 18, 92tgcgrcomlr 26745 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 𝑎) = (𝐶 𝑎))
9997, 98eqtr2d 2779 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝐶 𝑎) = (𝑦 𝑞))
1001, 3, 4, 12, 45, 47, 49tglinerflx1 26898 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑎 ∈ (𝑎𝐿𝑏))
101100, 55eleqtrrd 2842 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑎𝐴)
102 nelne2 3041 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎𝐴 ∧ ¬ 𝐶𝐴) → 𝑎𝐶)
103101, 60, 102syl2anc 583 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑎𝐶)
104103necomd 2998 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝐶𝑎)
1051, 2, 3, 12, 18, 45, 23, 74, 99, 104tgcgrneq 26748 . . . . . . . . . . . . . . . . . . . 20 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑦𝑞)
106105necomd 2998 . . . . . . . . . . . . . . . . . . 19 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑞𝑦)
1071, 2, 3, 12, 33, 23, 74, 86tgbtwncom 26753 . . . . . . . . . . . . . . . . . . 19 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑦 ∈ (𝑞𝐼𝑝))
10835simpld 494 . . . . . . . . . . . . . . . . . . 19 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑦 ∈ (𝑎𝐼𝑧))
1091, 2, 3, 12, 23, 74, 23, 45, 97tgcgrcomlr 26745 . . . . . . . . . . . . . . . . . . 19 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑞 𝑦) = (𝑎 𝑦))
1101, 2, 3, 12, 74, 45axtgcgrrflx 26727 . . . . . . . . . . . . . . . . . . 19 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑞 𝑎) = (𝑎 𝑞))
11197eqcomd 2744 . . . . . . . . . . . . . . . . . . 19 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 𝑎) = (𝑦 𝑞))
1121, 2, 3, 12, 74, 23, 33, 45, 23, 29, 45, 74, 106, 107, 108, 109, 37, 110, 111axtg5seg 26730 . . . . . . . . . . . . . . . . . 18 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑝 𝑎) = (𝑧 𝑞))
1131, 2, 3, 12, 33, 45, 29, 74, 112tgcgrcomlr 26745 . . . . . . . . . . . . . . . . 17 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑎 𝑝) = (𝑞 𝑧))
1141, 2, 3, 12, 23, 33, 23, 29, 37tgcgrcomlr 26745 . . . . . . . . . . . . . . . . 17 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑝 𝑦) = (𝑧 𝑦))
1151, 2, 91, 12, 45, 33, 23, 74, 29, 23, 113, 114, 111trgcgr 26781 . . . . . . . . . . . . . . . 16 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → ⟨“𝑎𝑝𝑦”⟩(cgrG‘𝐺)⟨“𝑞𝑧𝑦”⟩)
1161, 2, 3, 4, 5, 12, 45, 33, 23, 91, 74, 29, 23, 96, 115ragcgr 26972 . . . . . . . . . . . . . . 15 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → ⟨“𝑞𝑧𝑦”⟩ ∈ (∟G‘𝐺))
1171, 2, 3, 4, 5, 12, 74, 29, 23, 116ragcom 26963 . . . . . . . . . . . . . 14 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → ⟨“𝑦𝑧𝑞”⟩ ∈ (∟G‘𝐺))
1181, 2, 3, 4, 5, 12, 23, 29, 74israg 26962 . . . . . . . . . . . . . 14 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (⟨“𝑦𝑧𝑞”⟩ ∈ (∟G‘𝐺) ↔ (𝑦 𝑞) = (𝑦 (((pInvG‘𝐺)‘𝑧)‘𝑞))))
119117, 118mpbid 231 . . . . . . . . . . . . 13 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 𝑞) = (𝑦 (((pInvG‘𝐺)‘𝑧)‘𝑞)))
120119adantr 480 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑦 𝑞) = (𝑦 (((pInvG‘𝐺)‘𝑧)‘𝑞)))
12125adantr 480 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑦 𝐶) = (𝑦 𝑑))
122 eqidd 2739 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (((pInvG‘𝐺)‘𝑧)‘𝑞) = (((pInvG‘𝐺)‘𝑧)‘𝑞))
123 simprr 769 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))
1241, 2, 3, 4, 5, 27, 73, 13, 75, 79, 28, 80, 81, 30, 31, 89, 90, 120, 121, 122, 123krippen 26956 . . . . . . . . . . 11 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦 ∈ (𝑧𝐼𝑥))
1251, 3, 4, 27, 30, 28, 31, 72, 124btwnlng3 26886 . . . . . . . . . 10 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑥 ∈ (𝑧𝐿𝑦))
1261, 3, 4, 27, 28, 30, 31, 71, 125lncom 26887 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑥 ∈ (𝑦𝐿𝑧))
127 isperp.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ran 𝐿)
128127ad5antr 730 . . . . . . . . . . 11 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → 𝐴 ∈ ran 𝐿)
129128ad9antr 738 . . . . . . . . . 10 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐴 ∈ ran 𝐿)
13045adantr 480 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑎𝑃)
13192adantr 480 . . . . . . . . . . . . . 14 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑎 𝑦) = (𝑎 𝐶))
132131eqcomd 2744 . . . . . . . . . . . . 13 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑎 𝐶) = (𝑎 𝑦))
133103adantr 480 . . . . . . . . . . . . 13 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑎𝐶)
1341, 2, 3, 27, 130, 80, 130, 28, 132, 133tgcgrneq 26748 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑎𝑦)
135108adantr 480 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦 ∈ (𝑎𝐼𝑧))
1361, 3, 4, 27, 130, 28, 30, 134, 135btwnlng3 26886 . . . . . . . . . . 11 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑧 ∈ (𝑎𝐿𝑦))
137101adantr 480 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑎𝐴)
1381, 3, 4, 27, 130, 28, 134, 134, 129, 137, 57tglinethru 26901 . . . . . . . . . . 11 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐴 = (𝑎𝐿𝑦))
139136, 138eleqtrrd 2842 . . . . . . . . . 10 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑧𝐴)
1401, 3, 4, 27, 28, 30, 71, 71, 129, 57, 139tglinethru 26901 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐴 = (𝑦𝐿𝑧))
141126, 140eleqtrrd 2842 . . . . . . . 8 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑥𝐴)
142 nelne2 3041 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ ¬ 𝐶𝐴) → 𝑥𝐶)
143141, 61, 142syl2anc 583 . . . . . . . . . . 11 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑥𝐶)
144143necomd 2998 . . . . . . . . . 10 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐶𝑥)
1451, 3, 4, 27, 80, 31, 144tgelrnln 26895 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝐶𝐿𝑥) ∈ ran 𝐿)
1461, 3, 4, 27, 80, 31, 144tglinerflx2 26899 . . . . . . . . . 10 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑥 ∈ (𝐶𝐿𝑥))
147146, 141elind 4124 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑥 ∈ ((𝐶𝐿𝑥) ∩ 𝐴))
1481, 3, 4, 27, 80, 31, 144tglinerflx1 26898 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐶 ∈ (𝐶𝐿𝑥))
14927adantr 480 . . . . . . . . . . . 12 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝐺 ∈ TarskiG)
150130adantr 480 . . . . . . . . . . . 12 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑎𝑃)
15128adantr 480 . . . . . . . . . . . 12 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑦𝑃)
15234adantr 480 . . . . . . . . . . . 12 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑝𝑃)
15380adantr 480 . . . . . . . . . . . . . 14 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝐶𝑃)
154 eqidd 2739 . . . . . . . . . . . . . . . 16 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝐶 = 𝐶)
155 simpr 484 . . . . . . . . . . . . . . . 16 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
156 eqidd 2739 . . . . . . . . . . . . . . . 16 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑎 = 𝑎)
157154, 155, 156s3eqd 14505 . . . . . . . . . . . . . . 15 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → ⟨“𝐶𝑦𝑎”⟩ = ⟨“𝐶𝑥𝑎”⟩)
15831adantr 480 . . . . . . . . . . . . . . . 16 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑥𝑃)
15930adantr 480 . . . . . . . . . . . . . . . . 17 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑧𝑃)
160106adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑞𝑦)
1611, 2, 3, 27, 28, 75, 28, 79, 120tgcgrcomlr 26745 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑞 𝑦) = ((((pInvG‘𝐺)‘𝑧)‘𝑞) 𝑦))
1621, 2, 3, 4, 5, 27, 30, 73, 75mircgr 26922 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑧 (((pInvG‘𝐺)‘𝑧)‘𝑞)) = (𝑧 𝑞))
163162eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑧 𝑞) = (𝑧 (((pInvG‘𝐺)‘𝑧)‘𝑞)))
1641, 2, 3, 27, 30, 75, 30, 79, 163tgcgrcomlr 26745 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑞 𝑧) = ((((pInvG‘𝐺)‘𝑧)‘𝑞) 𝑧))
165 eqidd 2739 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑦 𝑧) = (𝑦 𝑧))
1661, 2, 3, 27, 75, 28, 80, 79, 28, 81, 30, 30, 160, 89, 90, 161, 121, 164, 165axtg5seg 26730 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝐶 𝑧) = (𝑑 𝑧))
1671, 2, 3, 27, 80, 30, 81, 30, 166tgcgrcomlr 26745 . . . . . . . . . . . . . . . . . . . 20 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑧 𝐶) = (𝑧 𝑑))
168123oveq2d 7271 . . . . . . . . . . . . . . . . . . . 20 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑧 𝑑) = (𝑧 (((pInvG‘𝐺)‘𝑥)‘𝐶)))
169167, 168eqtrd 2778 . . . . . . . . . . . . . . . . . . 19 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑧 𝐶) = (𝑧 (((pInvG‘𝐺)‘𝑥)‘𝐶)))
1701, 2, 3, 4, 5, 27, 30, 31, 80israg 26962 . . . . . . . . . . . . . . . . . . 19 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (⟨“𝑧𝑥𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝑧 𝐶) = (𝑧 (((pInvG‘𝐺)‘𝑥)‘𝐶))))
171169, 170mpbird 256 . . . . . . . . . . . . . . . . . 18 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → ⟨“𝑧𝑥𝐶”⟩ ∈ (∟G‘𝐺))
172171adantr 480 . . . . . . . . . . . . . . . . 17 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → ⟨“𝑧𝑥𝐶”⟩ ∈ (∟G‘𝐺))
17372adantr 480 . . . . . . . . . . . . . . . . . 18 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑧𝑦)
174173, 155neeqtrd 3012 . . . . . . . . . . . . . . . . 17 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑧𝑥)
175132adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → (𝑎 𝐶) = (𝑎 𝑦))
176133adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑎𝐶)
1771, 2, 3, 149, 150, 153, 150, 151, 175, 176tgcgrneq 26748 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑎𝑦)
178177necomd 2998 . . . . . . . . . . . . . . . . . . . 20 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑦𝑎)
179136adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑧 ∈ (𝑎𝐿𝑦))
1801, 3, 4, 149, 151, 150, 159, 178, 179lncom 26887 . . . . . . . . . . . . . . . . . . 19 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑧 ∈ (𝑦𝐿𝑎))
181155oveq1d 7270 . . . . . . . . . . . . . . . . . . 19 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → (𝑦𝐿𝑎) = (𝑥𝐿𝑎))
182180, 181eleqtrd 2841 . . . . . . . . . . . . . . . . . 18 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑧 ∈ (𝑥𝐿𝑎))
183182orcd 869 . . . . . . . . . . . . . . . . 17 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → (𝑧 ∈ (𝑥𝐿𝑎) ∨ 𝑥 = 𝑎))
1841, 2, 3, 4, 5, 149, 159, 158, 153, 150, 172, 174, 183ragcol 26964 . . . . . . . . . . . . . . . 16 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → ⟨“𝑎𝑥𝐶”⟩ ∈ (∟G‘𝐺))
1851, 2, 3, 4, 5, 149, 150, 158, 153, 184ragcom 26963 . . . . . . . . . . . . . . 15 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → ⟨“𝐶𝑥𝑎”⟩ ∈ (∟G‘𝐺))
186157, 185eqeltrd 2839 . . . . . . . . . . . . . 14 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → ⟨“𝐶𝑦𝑎”⟩ ∈ (∟G‘𝐺))
18764adantr 480 . . . . . . . . . . . . . 14 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝐶𝑦)
1881, 2, 3, 27, 80, 34, 28, 84tgbtwncom 26753 . . . . . . . . . . . . . . . 16 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑝 ∈ (𝑦𝐼𝐶))
1891, 4, 3, 27, 28, 34, 80, 188btwncolg3 26822 . . . . . . . . . . . . . . 15 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝐶 ∈ (𝑦𝐿𝑝) ∨ 𝑦 = 𝑝))
190189adantr 480 . . . . . . . . . . . . . 14 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → (𝐶 ∈ (𝑦𝐿𝑝) ∨ 𝑦 = 𝑝))
1911, 2, 3, 4, 5, 149, 153, 151, 150, 152, 186, 187, 190ragcol 26964 . . . . . . . . . . . . 13 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → ⟨“𝑝𝑦𝑎”⟩ ∈ (∟G‘𝐺))
1921, 2, 3, 4, 5, 149, 152, 151, 150, 191ragcom 26963 . . . . . . . . . . . 12 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → ⟨“𝑎𝑦𝑝”⟩ ∈ (∟G‘𝐺))
19396ad2antrr 722 . . . . . . . . . . . 12 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → ⟨“𝑎𝑝𝑦”⟩ ∈ (∟G‘𝐺))
1941, 2, 3, 4, 5, 149, 150, 151, 152, 192, 193ragflat 26969 . . . . . . . . . . 11 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑝)
19570adantr 480 . . . . . . . . . . . 12 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑦𝑝)
196195neneqd 2947 . . . . . . . . . . 11 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → ¬ 𝑦 = 𝑝)
197194, 196pm2.65da 813 . . . . . . . . . 10 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → ¬ 𝑦 = 𝑥)
198197neqned 2949 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦𝑥)
199123oveq2d 7271 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑦 𝑑) = (𝑦 (((pInvG‘𝐺)‘𝑥)‘𝐶)))
200121, 199eqtrd 2778 . . . . . . . . . . 11 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑦 𝐶) = (𝑦 (((pInvG‘𝐺)‘𝑥)‘𝐶)))
2011, 2, 3, 4, 5, 27, 28, 31, 80israg 26962 . . . . . . . . . . 11 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (⟨“𝑦𝑥𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝑦 𝐶) = (𝑦 (((pInvG‘𝐺)‘𝑥)‘𝐶))))
202200, 201mpbird 256 . . . . . . . . . 10 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → ⟨“𝑦𝑥𝐶”⟩ ∈ (∟G‘𝐺))
2031, 2, 3, 4, 5, 27, 28, 31, 80, 202ragcom 26963 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → ⟨“𝐶𝑥𝑦”⟩ ∈ (∟G‘𝐺))
2041, 2, 3, 4, 27, 145, 129, 147, 148, 57, 144, 198, 203ragperp 26982 . . . . . . . 8 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
20526, 141, 204reximssdv 3204 . . . . . . 7 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
2061, 2, 3, 11, 78, 22, 22, 17axtgsegcon 26729 . . . . . . 7 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → ∃𝑑𝑃 (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶)))
207205, 206r19.29a 3217 . . . . . 6 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
2081, 2, 3, 10, 32, 21, 21, 44axtgsegcon 26729 . . . . . 6 ((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) → ∃𝑞𝑃 (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎)))
209207, 208r19.29a 3217 . . . . 5 ((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
210 simplr 765 . . . . . 6 ((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) → 𝑝𝑃)
2111, 2, 3, 9, 43, 20, 20, 210axtgsegcon 26729 . . . . 5 ((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) → ∃𝑧𝑃 (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝)))
212209, 211r19.29a 3217 . . . 4 ((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
213 simplr 765 . . . . 5 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → 𝑦𝑃)
214 simprr 769 . . . . 5 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → (𝑎 𝑦) = (𝑎 𝐶))
2151, 2, 3, 4, 5, 8, 66, 213, 16, 42, 214midexlem 26957 . . . 4 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → ∃𝑝𝑃 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦))
216212, 215r19.29a 3217 . . 3 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
2171, 2, 3, 7, 46, 41, 41, 15axtgsegcon 26729 . . 3 ((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) → ∃𝑦𝑃 (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶)))
218216, 217r19.29a 3217 . 2 ((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
2191, 3, 4, 6, 127tgisline 26892 . 2 (𝜑 → ∃𝑎𝑃𝑏𝑃 (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏))
220218, 219r19.29vva 3263 1 (𝜑 → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  wrex 3064   class class class wbr 5070  ran crn 5581  cfv 6418  (class class class)co 7255  ⟨“cs3 14483  Basecbs 16840  distcds 16897  TarskiGcstrkg 26693  Itvcitv 26699  LineGclng 26700  cgrGccgrg 26775  pInvGcmir 26917  ∟Gcrag 26958  ⟂Gcperpg 26960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-s2 14489  df-s3 14490  df-trkgc 26713  df-trkgb 26714  df-trkgcb 26715  df-trkg 26718  df-cgrg 26776  df-leg 26848  df-mir 26918  df-rag 26959  df-perpg 26961
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator