MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  footex Structured version   Visualization version   GIF version

Theorem footex 28700
Description: From a point 𝐶 outside of a line 𝐴, there exists a point 𝑥 on 𝐴 such that (𝐶𝐿𝑥) is perpendicular to 𝐴. This point is unique, see foot 28701. (Contributed by Thierry Arnoux, 19-Oct-2019.) (Revised by Thierry Arnoux, 1-Jul-2023.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
foot.x (𝜑𝐶𝑃)
foot.y (𝜑 → ¬ 𝐶𝐴)
Assertion
Ref Expression
footex (𝜑 → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝜑,𝑥   𝑥,𝐶   𝑥,𝐼   𝑥,   𝑥,𝐿   𝑥,𝑃

Proof of Theorem footex
Dummy variables 𝑎 𝑏 𝑑 𝑝 𝑞 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isperp.p . . . . . . . . 9 𝑃 = (Base‘𝐺)
2 isperp.d . . . . . . . . 9 = (dist‘𝐺)
3 isperp.i . . . . . . . . 9 𝐼 = (Itv‘𝐺)
4 isperp.l . . . . . . . . 9 𝐿 = (LineG‘𝐺)
5 eqid 2735 . . . . . . . . 9 (pInvG‘𝐺) = (pInvG‘𝐺)
6 isperp.g . . . . . . . . . . . . . 14 (𝜑𝐺 ∈ TarskiG)
76ad5antr 734 . . . . . . . . . . . . 13 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → 𝐺 ∈ TarskiG)
87ad2antrr 726 . . . . . . . . . . . 12 ((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) → 𝐺 ∈ TarskiG)
98ad2antrr 726 . . . . . . . . . . 11 ((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) → 𝐺 ∈ TarskiG)
109ad2antrr 726 . . . . . . . . . 10 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → 𝐺 ∈ TarskiG)
1110ad2antrr 726 . . . . . . . . 9 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝐺 ∈ TarskiG)
12 eqid 2735 . . . . . . . . 9 ((pInvG‘𝐺)‘𝑥) = ((pInvG‘𝐺)‘𝑥)
13 foot.x . . . . . . . . . . . 12 (𝜑𝐶𝑃)
1413ad5antr 734 . . . . . . . . . . 11 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → 𝐶𝑃)
1514ad6antr 736 . . . . . . . . . 10 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → 𝐶𝑃)
1615ad2antrr 726 . . . . . . . . 9 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝐶𝑃)
17 simplr 768 . . . . . . . . 9 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑑𝑃)
18 simp-4r 783 . . . . . . . . . . . 12 ((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) → 𝑦𝑃)
1918ad2antrr 726 . . . . . . . . . . 11 ((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) → 𝑦𝑃)
2019ad2antrr 726 . . . . . . . . . 10 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → 𝑦𝑃)
2120ad2antrr 726 . . . . . . . . 9 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑦𝑃)
22 simprr 772 . . . . . . . . . 10 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 𝑑) = (𝑦 𝐶))
2322eqcomd 2741 . . . . . . . . 9 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 𝐶) = (𝑦 𝑑))
241, 2, 3, 4, 5, 11, 12, 16, 17, 21, 23midexlem 28671 . . . . . . . 8 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → ∃𝑥𝑃 𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))
259ad5antr 734 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐺 ∈ TarskiG)
26 isperp.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ran 𝐿)
2726ad5antr 734 . . . . . . . . . 10 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → 𝐴 ∈ ran 𝐿)
2827ad9antr 742 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐴 ∈ ran 𝐿)
2916adantr 480 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐶𝑃)
30 foot.y . . . . . . . . . . . 12 (𝜑 → ¬ 𝐶𝐴)
3130ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) → ¬ 𝐶𝐴)
3231ad10antr 744 . . . . . . . . . 10 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → ¬ 𝐶𝐴)
3332adantr 480 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → ¬ 𝐶𝐴)
34 simp-7r 789 . . . . . . . . . . 11 ((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) → 𝑎𝑃)
3534ad2antrr 726 . . . . . . . . . 10 ((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) → 𝑎𝑃)
3635ad5antr 734 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑎𝑃)
37 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) → 𝑏𝑃)
3837ad10antr 744 . . . . . . . . . 10 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑏𝑃)
3938adantr 480 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑏𝑃)
40 simp-4r 783 . . . . . . . . . 10 ((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) → 𝑝𝑃)
4140ad5antr 734 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑝𝑃)
42 simprl 770 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑥𝑃)
4319ad5antr 734 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦𝑃)
44 simp-7r 789 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑧𝑃)
45 simpllr 775 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑑𝑃)
46 simp-11r 797 . . . . . . . . . . 11 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏))
4746simpld 494 . . . . . . . . . 10 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝐴 = (𝑎𝐿𝑏))
4847adantr 480 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐴 = (𝑎𝐿𝑏))
4946simprd 495 . . . . . . . . . 10 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑎𝑏)
5049adantr 480 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑎𝑏)
51 simp-9r 793 . . . . . . . . . . 11 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶)))
5251simpld 494 . . . . . . . . . 10 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑎 ∈ (𝑏𝐼𝑦))
5352adantr 480 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑎 ∈ (𝑏𝐼𝑦))
5451simprd 495 . . . . . . . . . 10 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑎 𝑦) = (𝑎 𝐶))
5554adantr 480 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑎 𝑦) = (𝑎 𝐶))
56 simp-7r 789 . . . . . . . . . 10 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦))
5756adantr 480 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦))
58 simp-5r 785 . . . . . . . . . . 11 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝)))
5958simpld 494 . . . . . . . . . 10 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑦 ∈ (𝑎𝐼𝑧))
6059adantr 480 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦 ∈ (𝑎𝐼𝑧))
6158simprd 495 . . . . . . . . . 10 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 𝑧) = (𝑦 𝑝))
6261adantr 480 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑦 𝑧) = (𝑦 𝑝))
63 simp-5r 785 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑞𝑃)
64 simpllr 775 . . . . . . . . . . 11 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎)))
6564simpld 494 . . . . . . . . . 10 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑦 ∈ (𝑝𝐼𝑞))
6665adantr 480 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦 ∈ (𝑝𝐼𝑞))
6764simprd 495 . . . . . . . . . 10 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 𝑞) = (𝑦 𝑎))
6867adantr 480 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑦 𝑞) = (𝑦 𝑎))
69 simplrl 776 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑))
7022adantr 480 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑦 𝑑) = (𝑦 𝐶))
71 simprr 772 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))
721, 2, 3, 4, 25, 28, 29, 33, 36, 39, 41, 42, 43, 44, 45, 48, 50, 53, 55, 57, 60, 62, 63, 66, 68, 69, 70, 71footexlem1 28698 . . . . . . . 8 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑥𝐴)
731, 2, 3, 4, 25, 28, 29, 33, 36, 39, 41, 42, 43, 44, 45, 48, 50, 53, 55, 57, 60, 62, 63, 66, 68, 69, 70, 71footexlem2 28699 . . . . . . . 8 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
7424, 72, 73reximssdv 3158 . . . . . . 7 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
75 simp-4r 783 . . . . . . . . 9 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → 𝑧𝑃)
76 eqid 2735 . . . . . . . . 9 ((pInvG‘𝐺)‘𝑧) = ((pInvG‘𝐺)‘𝑧)
77 simplr 768 . . . . . . . . 9 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → 𝑞𝑃)
781, 2, 3, 4, 5, 10, 75, 76, 77mircl 28640 . . . . . . . 8 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → (((pInvG‘𝐺)‘𝑧)‘𝑞) ∈ 𝑃)
791, 2, 3, 10, 78, 20, 20, 15axtgsegcon 28443 . . . . . . 7 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → ∃𝑑𝑃 (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶)))
8074, 79r19.29a 3148 . . . . . 6 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
811, 2, 3, 9, 40, 19, 19, 35axtgsegcon 28443 . . . . . 6 ((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) → ∃𝑞𝑃 (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎)))
8280, 81r19.29a 3148 . . . . 5 ((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
83 simplr 768 . . . . . 6 ((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) → 𝑝𝑃)
841, 2, 3, 8, 34, 18, 18, 83axtgsegcon 28443 . . . . 5 ((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) → ∃𝑧𝑃 (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝)))
8582, 84r19.29a 3148 . . . 4 ((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
86 eqid 2735 . . . . 5 ((pInvG‘𝐺)‘𝑝) = ((pInvG‘𝐺)‘𝑝)
87 simplr 768 . . . . 5 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → 𝑦𝑃)
88 simp-5r 785 . . . . 5 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → 𝑎𝑃)
89 simprr 772 . . . . 5 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → (𝑎 𝑦) = (𝑎 𝐶))
901, 2, 3, 4, 5, 7, 86, 87, 14, 88, 89midexlem 28671 . . . 4 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → ∃𝑝𝑃 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦))
9185, 90r19.29a 3148 . . 3 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
926ad3antrrr 730 . . . 4 ((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) → 𝐺 ∈ TarskiG)
93 simpllr 775 . . . 4 ((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) → 𝑎𝑃)
9413ad3antrrr 730 . . . 4 ((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) → 𝐶𝑃)
951, 2, 3, 92, 37, 93, 93, 94axtgsegcon 28443 . . 3 ((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) → ∃𝑦𝑃 (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶)))
9691, 95r19.29a 3148 . 2 ((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
971, 3, 4, 6, 26tgisline 28606 . 2 (𝜑 → ∃𝑎𝑃𝑏𝑃 (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏))
9896, 97r19.29vva 3201 1 (𝜑 → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  wrex 3060   class class class wbr 5119  ran crn 5655  cfv 6531  (class class class)co 7405  Basecbs 17228  distcds 17280  TarskiGcstrkg 28406  Itvcitv 28412  LineGclng 28413  pInvGcmir 28631  ⟂Gcperpg 28674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-concat 14589  df-s1 14614  df-s2 14867  df-s3 14868  df-trkgc 28427  df-trkgb 28428  df-trkgcb 28429  df-trkg 28432  df-cgrg 28490  df-leg 28562  df-mir 28632  df-rag 28673  df-perpg 28675
This theorem is referenced by:  foot  28701  colperpexlem3  28711  opphl  28733  lmieu  28763  trgcopy  28783
  Copyright terms: Public domain W3C validator