MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  footex Structured version   Visualization version   GIF version

Theorem footex 27082
Description: From a point 𝐶 outside of a line 𝐴, there exists a point 𝑥 on 𝐴 such that (𝐶𝐿𝑥) is perpendicular to 𝐴. This point is unique, see foot 27083. (Contributed by Thierry Arnoux, 19-Oct-2019.) (Revised by Thierry Arnoux, 1-Jul-2023.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
foot.x (𝜑𝐶𝑃)
foot.y (𝜑 → ¬ 𝐶𝐴)
Assertion
Ref Expression
footex (𝜑 → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝜑,𝑥   𝑥,𝐶   𝑥,𝐼   𝑥,   𝑥,𝐿   𝑥,𝑃

Proof of Theorem footex
Dummy variables 𝑎 𝑏 𝑑 𝑝 𝑞 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isperp.p . . . . . . . . 9 𝑃 = (Base‘𝐺)
2 isperp.d . . . . . . . . 9 = (dist‘𝐺)
3 isperp.i . . . . . . . . 9 𝐼 = (Itv‘𝐺)
4 isperp.l . . . . . . . . 9 𝐿 = (LineG‘𝐺)
5 eqid 2738 . . . . . . . . 9 (pInvG‘𝐺) = (pInvG‘𝐺)
6 isperp.g . . . . . . . . . . . . . 14 (𝜑𝐺 ∈ TarskiG)
76ad5antr 731 . . . . . . . . . . . . 13 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → 𝐺 ∈ TarskiG)
87ad2antrr 723 . . . . . . . . . . . 12 ((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) → 𝐺 ∈ TarskiG)
98ad2antrr 723 . . . . . . . . . . 11 ((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) → 𝐺 ∈ TarskiG)
109ad2antrr 723 . . . . . . . . . 10 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → 𝐺 ∈ TarskiG)
1110ad2antrr 723 . . . . . . . . 9 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝐺 ∈ TarskiG)
12 eqid 2738 . . . . . . . . 9 ((pInvG‘𝐺)‘𝑥) = ((pInvG‘𝐺)‘𝑥)
13 foot.x . . . . . . . . . . . 12 (𝜑𝐶𝑃)
1413ad5antr 731 . . . . . . . . . . 11 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → 𝐶𝑃)
1514ad6antr 733 . . . . . . . . . 10 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → 𝐶𝑃)
1615ad2antrr 723 . . . . . . . . 9 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝐶𝑃)
17 simplr 766 . . . . . . . . 9 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑑𝑃)
18 simp-4r 781 . . . . . . . . . . . 12 ((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) → 𝑦𝑃)
1918ad2antrr 723 . . . . . . . . . . 11 ((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) → 𝑦𝑃)
2019ad2antrr 723 . . . . . . . . . 10 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → 𝑦𝑃)
2120ad2antrr 723 . . . . . . . . 9 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑦𝑃)
22 simprr 770 . . . . . . . . . 10 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 𝑑) = (𝑦 𝐶))
2322eqcomd 2744 . . . . . . . . 9 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 𝐶) = (𝑦 𝑑))
241, 2, 3, 4, 5, 11, 12, 16, 17, 21, 23midexlem 27053 . . . . . . . 8 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → ∃𝑥𝑃 𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))
259ad5antr 731 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐺 ∈ TarskiG)
26 isperp.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ran 𝐿)
2726ad5antr 731 . . . . . . . . . 10 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → 𝐴 ∈ ran 𝐿)
2827ad9antr 739 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐴 ∈ ran 𝐿)
2916adantr 481 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐶𝑃)
30 foot.y . . . . . . . . . . . 12 (𝜑 → ¬ 𝐶𝐴)
3130ad3antrrr 727 . . . . . . . . . . 11 ((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) → ¬ 𝐶𝐴)
3231ad10antr 741 . . . . . . . . . 10 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → ¬ 𝐶𝐴)
3332adantr 481 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → ¬ 𝐶𝐴)
34 simp-7r 787 . . . . . . . . . . 11 ((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) → 𝑎𝑃)
3534ad2antrr 723 . . . . . . . . . 10 ((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) → 𝑎𝑃)
3635ad5antr 731 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑎𝑃)
37 simplr 766 . . . . . . . . . . 11 ((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) → 𝑏𝑃)
3837ad10antr 741 . . . . . . . . . 10 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑏𝑃)
3938adantr 481 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑏𝑃)
40 simp-4r 781 . . . . . . . . . 10 ((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) → 𝑝𝑃)
4140ad5antr 731 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑝𝑃)
42 simprl 768 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑥𝑃)
4319ad5antr 731 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦𝑃)
44 simp-7r 787 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑧𝑃)
45 simpllr 773 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑑𝑃)
46 simp-11r 795 . . . . . . . . . . 11 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏))
4746simpld 495 . . . . . . . . . 10 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝐴 = (𝑎𝐿𝑏))
4847adantr 481 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐴 = (𝑎𝐿𝑏))
4946simprd 496 . . . . . . . . . 10 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑎𝑏)
5049adantr 481 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑎𝑏)
51 simp-9r 791 . . . . . . . . . . 11 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶)))
5251simpld 495 . . . . . . . . . 10 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑎 ∈ (𝑏𝐼𝑦))
5352adantr 481 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑎 ∈ (𝑏𝐼𝑦))
5451simprd 496 . . . . . . . . . 10 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑎 𝑦) = (𝑎 𝐶))
5554adantr 481 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑎 𝑦) = (𝑎 𝐶))
56 simp-7r 787 . . . . . . . . . 10 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦))
5756adantr 481 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦))
58 simp-5r 783 . . . . . . . . . . 11 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝)))
5958simpld 495 . . . . . . . . . 10 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑦 ∈ (𝑎𝐼𝑧))
6059adantr 481 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦 ∈ (𝑎𝐼𝑧))
6158simprd 496 . . . . . . . . . 10 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 𝑧) = (𝑦 𝑝))
6261adantr 481 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑦 𝑧) = (𝑦 𝑝))
63 simp-5r 783 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑞𝑃)
64 simpllr 773 . . . . . . . . . . 11 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎)))
6564simpld 495 . . . . . . . . . 10 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑦 ∈ (𝑝𝐼𝑞))
6665adantr 481 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦 ∈ (𝑝𝐼𝑞))
6764simprd 496 . . . . . . . . . 10 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 𝑞) = (𝑦 𝑎))
6867adantr 481 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑦 𝑞) = (𝑦 𝑎))
69 simplrl 774 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑))
7022adantr 481 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑦 𝑑) = (𝑦 𝐶))
71 simprr 770 . . . . . . . . 9 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))
721, 2, 3, 4, 25, 28, 29, 33, 36, 39, 41, 42, 43, 44, 45, 48, 50, 53, 55, 57, 60, 62, 63, 66, 68, 69, 70, 71footexlem1 27080 . . . . . . . 8 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑥𝐴)
731, 2, 3, 4, 25, 28, 29, 33, 36, 39, 41, 42, 43, 44, 45, 48, 50, 53, 55, 57, 60, 62, 63, 66, 68, 69, 70, 71footexlem2 27081 . . . . . . . 8 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
7424, 72, 73reximssdv 3205 . . . . . . 7 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
75 simp-4r 781 . . . . . . . . 9 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → 𝑧𝑃)
76 eqid 2738 . . . . . . . . 9 ((pInvG‘𝐺)‘𝑧) = ((pInvG‘𝐺)‘𝑧)
77 simplr 766 . . . . . . . . 9 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → 𝑞𝑃)
781, 2, 3, 4, 5, 10, 75, 76, 77mircl 27022 . . . . . . . 8 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → (((pInvG‘𝐺)‘𝑧)‘𝑞) ∈ 𝑃)
791, 2, 3, 10, 78, 20, 20, 15axtgsegcon 26825 . . . . . . 7 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → ∃𝑑𝑃 (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶)))
8074, 79r19.29a 3218 . . . . . 6 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
811, 2, 3, 9, 40, 19, 19, 35axtgsegcon 26825 . . . . . 6 ((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) → ∃𝑞𝑃 (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎)))
8280, 81r19.29a 3218 . . . . 5 ((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
83 simplr 766 . . . . . 6 ((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) → 𝑝𝑃)
841, 2, 3, 8, 34, 18, 18, 83axtgsegcon 26825 . . . . 5 ((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) → ∃𝑧𝑃 (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝)))
8582, 84r19.29a 3218 . . . 4 ((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
86 eqid 2738 . . . . 5 ((pInvG‘𝐺)‘𝑝) = ((pInvG‘𝐺)‘𝑝)
87 simplr 766 . . . . 5 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → 𝑦𝑃)
88 simp-5r 783 . . . . 5 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → 𝑎𝑃)
89 simprr 770 . . . . 5 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → (𝑎 𝑦) = (𝑎 𝐶))
901, 2, 3, 4, 5, 7, 86, 87, 14, 88, 89midexlem 27053 . . . 4 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → ∃𝑝𝑃 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦))
9185, 90r19.29a 3218 . . 3 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
926ad3antrrr 727 . . . 4 ((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) → 𝐺 ∈ TarskiG)
93 simpllr 773 . . . 4 ((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) → 𝑎𝑃)
9413ad3antrrr 727 . . . 4 ((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) → 𝐶𝑃)
951, 2, 3, 92, 37, 93, 93, 94axtgsegcon 26825 . . 3 ((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) → ∃𝑦𝑃 (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶)))
9691, 95r19.29a 3218 . 2 ((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
971, 3, 4, 6, 26tgisline 26988 . 2 (𝜑 → ∃𝑎𝑃𝑏𝑃 (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏))
9896, 97r19.29vva 3266 1 (𝜑 → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wrex 3065   class class class wbr 5074  ran crn 5590  cfv 6433  (class class class)co 7275  Basecbs 16912  distcds 16971  TarskiGcstrkg 26788  Itvcitv 26794  LineGclng 26795  pInvGcmir 27013  ⟂Gcperpg 27056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301  df-s2 14561  df-s3 14562  df-trkgc 26809  df-trkgb 26810  df-trkgcb 26811  df-trkg 26814  df-cgrg 26872  df-leg 26944  df-mir 27014  df-rag 27055  df-perpg 27057
This theorem is referenced by:  foot  27083  colperpexlem3  27093  opphl  27115  lmieu  27145  trgcopy  27165
  Copyright terms: Public domain W3C validator