MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad5ant125 Structured version   Visualization version   GIF version

Theorem ad5ant125 1367
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
Hypothesis
Ref Expression
ad5ant.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
ad5ant125 (((((𝜑𝜓) ∧ 𝜏) ∧ 𝜂) ∧ 𝜒) → 𝜃)

Proof of Theorem ad5ant125
StepHypRef Expression
1 ad5ant.1 . . . 4 ((𝜑𝜓𝜒) → 𝜃)
213expia 1122 . . 3 ((𝜑𝜓) → (𝜒𝜃))
322a1d 26 . 2 ((𝜑𝜓) → (𝜏 → (𝜂 → (𝜒𝜃))))
43imp41 429 1 (((((𝜑𝜓) ∧ 𝜏) ∧ 𝜂) ∧ 𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1090
This theorem is referenced by:  supxrge  42437  hoidmvlelem3  43699
  Copyright terms: Public domain W3C validator