| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad5ant125 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| ad5ant.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| ad5ant125 | ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜏) ∧ 𝜂) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad5ant.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3expia 1122 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| 3 | 2 | 2a1d 26 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜏 → (𝜂 → (𝜒 → 𝜃)))) |
| 4 | 3 | imp41 425 | 1 ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜏) ∧ 𝜂) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
| This theorem is referenced by: supxrge 45349 hoidmvlelem3 46612 |
| Copyright terms: Public domain | W3C validator |