| Step | Hyp | Ref
| Expression |
| 1 | | 1nn 12277 |
. . . . 5
⊢ 1 ∈
ℕ |
| 2 | 1 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 = ∅) → 1 ∈
ℕ) |
| 3 | | 0le0 12367 |
. . . . . 6
⊢ 0 ≤
0 |
| 4 | 3 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 = ∅) → 0 ≤
0) |
| 5 | | hoidmvlelem3.g |
. . . . . . . 8
⊢ 𝐺 = ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) |
| 6 | 5 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌 = ∅) → 𝐺 = ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌))) |
| 7 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑌 = ∅ → (𝐿‘𝑌) = (𝐿‘∅)) |
| 8 | | reseq2 5992 |
. . . . . . . . . 10
⊢ (𝑌 = ∅ → (𝐴 ↾ 𝑌) = (𝐴 ↾ ∅)) |
| 9 | | res0 6001 |
. . . . . . . . . . 11
⊢ (𝐴 ↾ ∅) =
∅ |
| 10 | 9 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑌 = ∅ → (𝐴 ↾ ∅) =
∅) |
| 11 | 8, 10 | eqtrd 2777 |
. . . . . . . . 9
⊢ (𝑌 = ∅ → (𝐴 ↾ 𝑌) = ∅) |
| 12 | | reseq2 5992 |
. . . . . . . . . 10
⊢ (𝑌 = ∅ → (𝐵 ↾ 𝑌) = (𝐵 ↾ ∅)) |
| 13 | | res0 6001 |
. . . . . . . . . . 11
⊢ (𝐵 ↾ ∅) =
∅ |
| 14 | 13 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑌 = ∅ → (𝐵 ↾ ∅) =
∅) |
| 15 | 12, 14 | eqtrd 2777 |
. . . . . . . . 9
⊢ (𝑌 = ∅ → (𝐵 ↾ 𝑌) = ∅) |
| 16 | 7, 11, 15 | oveq123d 7452 |
. . . . . . . 8
⊢ (𝑌 = ∅ → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) = (∅(𝐿‘∅)∅)) |
| 17 | 16 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌 = ∅) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) = (∅(𝐿‘∅)∅)) |
| 18 | | hoidmvlelem3.l |
. . . . . . . 8
⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
| 19 | | f0 6789 |
. . . . . . . . 9
⊢
∅:∅⟶ℝ |
| 20 | 19 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑌 = ∅) →
∅:∅⟶ℝ) |
| 21 | 18, 20, 20 | hoidmv0val 46598 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌 = ∅) → (∅(𝐿‘∅)∅) =
0) |
| 22 | 6, 17, 21 | 3eqtrd 2781 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑌 = ∅) → 𝐺 = 0) |
| 23 | | nfcvd 2906 |
. . . . . . . . . . 11
⊢ (𝜑 → Ⅎ𝑗(𝑃‘1)) |
| 24 | | nfv 1914 |
. . . . . . . . . . 11
⊢
Ⅎ𝑗𝜑 |
| 25 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 = 1) → 𝑗 = 1) |
| 26 | 25 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 = 1) → (𝑃‘𝑗) = (𝑃‘1)) |
| 27 | | 1red 11262 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ∈
ℝ) |
| 28 | | rge0ssre 13496 |
. . . . . . . . . . . . 13
⊢
(0[,)+∞) ⊆ ℝ |
| 29 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝜑) |
| 30 | 1 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 1 ∈
ℕ) |
| 31 | 1 | elexi 3503 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
V |
| 32 | | eleq1 2829 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 1 → (𝑗 ∈ ℕ ↔ 1 ∈
ℕ)) |
| 33 | 32 | anbi2d 630 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 1 → ((𝜑 ∧ 𝑗 ∈ ℕ) ↔ (𝜑 ∧ 1 ∈ ℕ))) |
| 34 | | fveq2 6906 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 1 → (𝑃‘𝑗) = (𝑃‘1)) |
| 35 | 34 | eleq1d 2826 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 1 → ((𝑃‘𝑗) ∈ (0[,)+∞) ↔ (𝑃‘1) ∈
(0[,)+∞))) |
| 36 | 33, 35 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 1 → (((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑃‘𝑗) ∈ (0[,)+∞)) ↔ ((𝜑 ∧ 1 ∈ ℕ) →
(𝑃‘1) ∈
(0[,)+∞)))) |
| 37 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℕ) |
| 38 | | ovexd 7466 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ ℕ → ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)) ∈ V) |
| 39 | | hoidmvlelem3.p |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑃 = (𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗))) |
| 40 | 39 | fvmpt2 7027 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 ∈ ℕ ∧ ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)) ∈ V) → (𝑃‘𝑗) = ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗))) |
| 41 | 37, 38, 40 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ ℕ → (𝑃‘𝑗) = ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗))) |
| 42 | 41 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑃‘𝑗) = ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗))) |
| 43 | | hoidmvlelem3.x |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑋 ∈ Fin) |
| 44 | | hoidmvlelem3.w |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑊 = (𝑌 ∪ {𝑍}) |
| 45 | 44 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑊 = (𝑌 ∪ {𝑍})) |
| 46 | | hoidmvlelem3.y |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| 47 | | hoidmvlelem3.z |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝑍 ∈ (𝑋 ∖ 𝑌)) |
| 48 | 47 | eldifad 3963 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑍 ∈ 𝑋) |
| 49 | | snssi 4808 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑍 ∈ 𝑋 → {𝑍} ⊆ 𝑋) |
| 50 | 48, 49 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → {𝑍} ⊆ 𝑋) |
| 51 | 46, 50 | unssd 4192 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑌 ∪ {𝑍}) ⊆ 𝑋) |
| 52 | 45, 51 | eqsstrd 4018 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑊 ⊆ 𝑋) |
| 53 | 43, 52 | ssfid 9301 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑊 ∈ Fin) |
| 54 | | ssun1 4178 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑌 ⊆ (𝑌 ∪ {𝑍}) |
| 55 | 44 | eqcomi 2746 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑌 ∪ {𝑍}) = 𝑊 |
| 56 | 54, 55 | sseqtri 4032 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑌 ⊆ 𝑊 |
| 57 | 56 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑌 ⊆ 𝑊) |
| 58 | 53, 57 | ssfid 9301 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑌 ∈ Fin) |
| 59 | 58 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑌 ∈ Fin) |
| 60 | | iftrue 4531 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) = ((𝐶‘𝑗) ↾ 𝑌)) |
| 61 | 60 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) = ((𝐶‘𝑗) ↾ 𝑌)) |
| 62 | | hoidmvlelem3.c |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝐶:ℕ⟶(ℝ ↑m
𝑊)) |
| 63 | 62 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗) ∈ (ℝ ↑m 𝑊)) |
| 64 | | elmapi 8889 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐶‘𝑗) ∈ (ℝ ↑m 𝑊) → (𝐶‘𝑗):𝑊⟶ℝ) |
| 65 | 63, 64 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗):𝑊⟶ℝ) |
| 66 | 54, 44 | sseqtrri 4033 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 𝑌 ⊆ 𝑊 |
| 67 | 66 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑌 ⊆ 𝑊) |
| 68 | 65, 67 | fssresd 6775 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗) ↾ 𝑌):𝑌⟶ℝ) |
| 69 | | reex 11246 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ℝ
∈ V |
| 70 | 69 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ℝ ∈
V) |
| 71 | 53, 57 | ssexd 5324 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝑌 ∈ V) |
| 72 | 71 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑌 ∈ V) |
| 73 | 70, 72 | elmapd 8880 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((𝐶‘𝑗) ↾ 𝑌) ∈ (ℝ ↑m 𝑌) ↔ ((𝐶‘𝑗) ↾ 𝑌):𝑌⟶ℝ)) |
| 74 | 68, 73 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗) ↾ 𝑌) ∈ (ℝ ↑m 𝑌)) |
| 75 | 74 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → ((𝐶‘𝑗) ↾ 𝑌) ∈ (ℝ ↑m 𝑌)) |
| 76 | 61, 75 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) ∈ (ℝ ↑m 𝑌)) |
| 77 | | iffalse 4534 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬
𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) = 𝐹) |
| 78 | 77 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) = 𝐹) |
| 79 | | 0red 11264 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 0 ∈ ℝ) |
| 80 | | hoidmvlelem3.f |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝐹 = (𝑦 ∈ 𝑌 ↦ 0) |
| 81 | 79, 80 | fmptd 7134 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐹:𝑌⟶ℝ) |
| 82 | 69 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → ℝ ∈
V) |
| 83 | 82, 58 | elmapd 8880 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝐹 ∈ (ℝ ↑m 𝑌) ↔ 𝐹:𝑌⟶ℝ)) |
| 84 | 81, 83 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐹 ∈ (ℝ ↑m 𝑌)) |
| 85 | 84 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → 𝐹 ∈ (ℝ ↑m 𝑌)) |
| 86 | 78, 85 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) ∈ (ℝ ↑m 𝑌)) |
| 87 | 76, 86 | pm2.61dan 813 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) ∈ (ℝ ↑m 𝑌)) |
| 88 | | hoidmvlelem3.j |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐽 = (𝑗 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹)) |
| 89 | 87, 88 | fmptd 7134 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐽:ℕ⟶(ℝ ↑m
𝑌)) |
| 90 | 89 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐽‘𝑗) ∈ (ℝ ↑m 𝑌)) |
| 91 | | elmapi 8889 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐽‘𝑗) ∈ (ℝ ↑m 𝑌) → (𝐽‘𝑗):𝑌⟶ℝ) |
| 92 | 90, 91 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐽‘𝑗):𝑌⟶ℝ) |
| 93 | | iftrue 4531 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹) = ((𝐷‘𝑗) ↾ 𝑌)) |
| 94 | 93 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹) = ((𝐷‘𝑗) ↾ 𝑌)) |
| 95 | | hoidmvlelem3.d |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝐷:ℕ⟶(ℝ ↑m
𝑊)) |
| 96 | 95 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗) ∈ (ℝ ↑m 𝑊)) |
| 97 | | elmapi 8889 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐷‘𝑗) ∈ (ℝ ↑m 𝑊) → (𝐷‘𝑗):𝑊⟶ℝ) |
| 98 | 96, 97 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗):𝑊⟶ℝ) |
| 99 | 98, 67 | fssresd 6775 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐷‘𝑗) ↾ 𝑌):𝑌⟶ℝ) |
| 100 | 70, 72 | elmapd 8880 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((𝐷‘𝑗) ↾ 𝑌) ∈ (ℝ ↑m 𝑌) ↔ ((𝐷‘𝑗) ↾ 𝑌):𝑌⟶ℝ)) |
| 101 | 99, 100 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐷‘𝑗) ↾ 𝑌) ∈ (ℝ ↑m 𝑌)) |
| 102 | 101 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → ((𝐷‘𝑗) ↾ 𝑌) ∈ (ℝ ↑m 𝑌)) |
| 103 | 94, 102 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹) ∈ (ℝ ↑m 𝑌)) |
| 104 | | iffalse 4534 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬
𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹) = 𝐹) |
| 105 | 104 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹) = 𝐹) |
| 106 | 105, 85 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹) ∈ (ℝ ↑m 𝑌)) |
| 107 | 103, 106 | pm2.61dan 813 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹) ∈ (ℝ ↑m 𝑌)) |
| 108 | | hoidmvlelem3.k |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐾 = (𝑗 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹)) |
| 109 | 107, 108 | fmptd 7134 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐾:ℕ⟶(ℝ ↑m
𝑌)) |
| 110 | 109 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐾‘𝑗) ∈ (ℝ ↑m 𝑌)) |
| 111 | | elmapi 8889 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐾‘𝑗) ∈ (ℝ ↑m 𝑌) → (𝐾‘𝑗):𝑌⟶ℝ) |
| 112 | 110, 111 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐾‘𝑗):𝑌⟶ℝ) |
| 113 | 18, 59, 92, 112 | hoidmvcl 46597 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)) ∈ (0[,)+∞)) |
| 114 | 42, 113 | eqeltrd 2841 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑃‘𝑗) ∈ (0[,)+∞)) |
| 115 | 31, 36, 114 | vtocl 3558 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 1 ∈ ℕ) →
(𝑃‘1) ∈
(0[,)+∞)) |
| 116 | 29, 30, 115 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑃‘1) ∈
(0[,)+∞)) |
| 117 | 28, 116 | sselid 3981 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑃‘1) ∈ ℝ) |
| 118 | 117 | recnd 11289 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑃‘1) ∈ ℂ) |
| 119 | 23, 24, 26, 27, 118 | sumsnd 45031 |
. . . . . . . . . 10
⊢ (𝜑 → Σ𝑗 ∈ {1} (𝑃‘𝑗) = (𝑃‘1)) |
| 120 | 119 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑌 = ∅) → Σ𝑗 ∈ {1} (𝑃‘𝑗) = (𝑃‘1)) |
| 121 | | fveq2 6906 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 1 → (𝐽‘𝑗) = (𝐽‘1)) |
| 122 | | fveq2 6906 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 1 → (𝐾‘𝑗) = (𝐾‘1)) |
| 123 | 121, 122 | oveq12d 7449 |
. . . . . . . . . . . 12
⊢ (𝑗 = 1 → ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)) = ((𝐽‘1)(𝐿‘𝑌)(𝐾‘1))) |
| 124 | | ovex 7464 |
. . . . . . . . . . . 12
⊢ ((𝐽‘1)(𝐿‘𝑌)(𝐾‘1)) ∈ V |
| 125 | 123, 39, 124 | fvmpt 7016 |
. . . . . . . . . . 11
⊢ (1 ∈
ℕ → (𝑃‘1)
= ((𝐽‘1)(𝐿‘𝑌)(𝐾‘1))) |
| 126 | 1, 125 | ax-mp 5 |
. . . . . . . . . 10
⊢ (𝑃‘1) = ((𝐽‘1)(𝐿‘𝑌)(𝐾‘1)) |
| 127 | 126 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑌 = ∅) → (𝑃‘1) = ((𝐽‘1)(𝐿‘𝑌)(𝐾‘1))) |
| 128 | 7 | oveqd 7448 |
. . . . . . . . . . 11
⊢ (𝑌 = ∅ → ((𝐽‘1)(𝐿‘𝑌)(𝐾‘1)) = ((𝐽‘1)(𝐿‘∅)(𝐾‘1))) |
| 129 | 128 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑌 = ∅) → ((𝐽‘1)(𝐿‘𝑌)(𝐾‘1)) = ((𝐽‘1)(𝐿‘∅)(𝐾‘1))) |
| 130 | 121 | feq1d 6720 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 1 → ((𝐽‘𝑗):𝑌⟶ℝ ↔ (𝐽‘1):𝑌⟶ℝ)) |
| 131 | 33, 130 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 1 → (((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐽‘𝑗):𝑌⟶ℝ) ↔ ((𝜑 ∧ 1 ∈ ℕ) → (𝐽‘1):𝑌⟶ℝ))) |
| 132 | 68 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → ((𝐶‘𝑗) ↾ 𝑌):𝑌⟶ℝ) |
| 133 | 61 | feq1d 6720 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → (if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹):𝑌⟶ℝ ↔ ((𝐶‘𝑗) ↾ 𝑌):𝑌⟶ℝ)) |
| 134 | 132, 133 | mpbird 257 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹):𝑌⟶ℝ) |
| 135 | 81 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → 𝐹:𝑌⟶ℝ) |
| 136 | 78 | feq1d 6720 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → (if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹):𝑌⟶ℝ ↔ 𝐹:𝑌⟶ℝ)) |
| 137 | 135, 136 | mpbird 257 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹):𝑌⟶ℝ) |
| 138 | 134, 137 | pm2.61dan 813 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹):𝑌⟶ℝ) |
| 139 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ) |
| 140 | | fvex 6919 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐶‘𝑗) ∈ V |
| 141 | 140 | resex 6047 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐶‘𝑗) ↾ 𝑌) ∈ V |
| 142 | 61, 141 | eqeltrdi 2849 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) ∈ V) |
| 143 | 84 | elexd 3504 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐹 ∈ V) |
| 144 | 143 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝐹 ∈ V) |
| 145 | 144 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → 𝐹 ∈ V) |
| 146 | 78, 145 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) ∈ V) |
| 147 | 142, 146 | pm2.61dan 813 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) ∈ V) |
| 148 | 88 | fvmpt2 7027 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 ∈ ℕ ∧ if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) ∈ V) → (𝐽‘𝑗) = if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹)) |
| 149 | 139, 147,
148 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐽‘𝑗) = if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹)) |
| 150 | 149 | feq1d 6720 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐽‘𝑗):𝑌⟶ℝ ↔ if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹):𝑌⟶ℝ)) |
| 151 | 138, 150 | mpbird 257 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐽‘𝑗):𝑌⟶ℝ) |
| 152 | 31, 131, 151 | vtocl 3558 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 1 ∈ ℕ) →
(𝐽‘1):𝑌⟶ℝ) |
| 153 | 29, 30, 152 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐽‘1):𝑌⟶ℝ) |
| 154 | 153 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑌 = ∅) → (𝐽‘1):𝑌⟶ℝ) |
| 155 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑌 = ∅ → 𝑌 = ∅) |
| 156 | 155 | eqcomd 2743 |
. . . . . . . . . . . . . 14
⊢ (𝑌 = ∅ → ∅ =
𝑌) |
| 157 | 156 | feq2d 6722 |
. . . . . . . . . . . . 13
⊢ (𝑌 = ∅ → ((𝐽‘1):∅⟶ℝ
↔ (𝐽‘1):𝑌⟶ℝ)) |
| 158 | 157 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑌 = ∅) → ((𝐽‘1):∅⟶ℝ ↔
(𝐽‘1):𝑌⟶ℝ)) |
| 159 | 154, 158 | mpbird 257 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑌 = ∅) → (𝐽‘1):∅⟶ℝ) |
| 160 | 122 | feq1d 6720 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 1 → ((𝐾‘𝑗):𝑌⟶ℝ ↔ (𝐾‘1):𝑌⟶ℝ)) |
| 161 | 33, 160 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 1 → (((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐾‘𝑗):𝑌⟶ℝ) ↔ ((𝜑 ∧ 1 ∈ ℕ) → (𝐾‘1):𝑌⟶ℝ))) |
| 162 | 31, 161, 112 | vtocl 3558 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 1 ∈ ℕ) →
(𝐾‘1):𝑌⟶ℝ) |
| 163 | 29, 30, 162 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐾‘1):𝑌⟶ℝ) |
| 164 | 163 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑌 = ∅) → (𝐾‘1):𝑌⟶ℝ) |
| 165 | 156 | feq2d 6722 |
. . . . . . . . . . . . 13
⊢ (𝑌 = ∅ → ((𝐾‘1):∅⟶ℝ
↔ (𝐾‘1):𝑌⟶ℝ)) |
| 166 | 165 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑌 = ∅) → ((𝐾‘1):∅⟶ℝ ↔
(𝐾‘1):𝑌⟶ℝ)) |
| 167 | 164, 166 | mpbird 257 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑌 = ∅) → (𝐾‘1):∅⟶ℝ) |
| 168 | 18, 159, 167 | hoidmv0val 46598 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑌 = ∅) → ((𝐽‘1)(𝐿‘∅)(𝐾‘1)) = 0) |
| 169 | 129, 168 | eqtrd 2777 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑌 = ∅) → ((𝐽‘1)(𝐿‘𝑌)(𝐾‘1)) = 0) |
| 170 | 120, 127,
169 | 3eqtrd 2781 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑌 = ∅) → Σ𝑗 ∈ {1} (𝑃‘𝑗) = 0) |
| 171 | 170 | oveq2d 7447 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌 = ∅) → ((1 + 𝐸) · Σ𝑗 ∈ {1} (𝑃‘𝑗)) = ((1 + 𝐸) · 0)) |
| 172 | | hoidmvlelem3.e |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
| 173 | 172 | rpred 13077 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∈ ℝ) |
| 174 | 27, 173 | readdcld 11290 |
. . . . . . . . . 10
⊢ (𝜑 → (1 + 𝐸) ∈ ℝ) |
| 175 | 174 | recnd 11289 |
. . . . . . . . 9
⊢ (𝜑 → (1 + 𝐸) ∈ ℂ) |
| 176 | 175 | mul01d 11460 |
. . . . . . . 8
⊢ (𝜑 → ((1 + 𝐸) · 0) = 0) |
| 177 | 176 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌 = ∅) → ((1 + 𝐸) · 0) = 0) |
| 178 | | eqidd 2738 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌 = ∅) → 0 = 0) |
| 179 | 171, 177,
178 | 3eqtrd 2781 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑌 = ∅) → ((1 + 𝐸) · Σ𝑗 ∈ {1} (𝑃‘𝑗)) = 0) |
| 180 | 22, 179 | breq12d 5156 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 = ∅) → (𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ {1} (𝑃‘𝑗)) ↔ 0 ≤ 0)) |
| 181 | 4, 180 | mpbird 257 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 = ∅) → 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ {1} (𝑃‘𝑗))) |
| 182 | | oveq2 7439 |
. . . . . . . . 9
⊢ (𝑚 = 1 → (1...𝑚) = (1...1)) |
| 183 | 1 | nnzi 12641 |
. . . . . . . . . . 11
⊢ 1 ∈
ℤ |
| 184 | | fzsn 13606 |
. . . . . . . . . . 11
⊢ (1 ∈
ℤ → (1...1) = {1}) |
| 185 | 183, 184 | ax-mp 5 |
. . . . . . . . . 10
⊢ (1...1) =
{1} |
| 186 | 185 | a1i 11 |
. . . . . . . . 9
⊢ (𝑚 = 1 → (1...1) =
{1}) |
| 187 | 182, 186 | eqtrd 2777 |
. . . . . . . 8
⊢ (𝑚 = 1 → (1...𝑚) = {1}) |
| 188 | 187 | sumeq1d 15736 |
. . . . . . 7
⊢ (𝑚 = 1 → Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗) = Σ𝑗 ∈ {1} (𝑃‘𝑗)) |
| 189 | 188 | oveq2d 7447 |
. . . . . 6
⊢ (𝑚 = 1 → ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) = ((1 + 𝐸) · Σ𝑗 ∈ {1} (𝑃‘𝑗))) |
| 190 | 189 | breq2d 5155 |
. . . . 5
⊢ (𝑚 = 1 → (𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) ↔ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ {1} (𝑃‘𝑗)))) |
| 191 | 190 | rspcev 3622 |
. . . 4
⊢ ((1
∈ ℕ ∧ 𝐺 ≤
((1 + 𝐸) ·
Σ𝑗 ∈ {1} (𝑃‘𝑗))) → ∃𝑚 ∈ ℕ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) |
| 192 | 2, 181, 191 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = ∅) → ∃𝑚 ∈ ℕ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) |
| 193 | | simpl 482 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑌 = ∅) → 𝜑) |
| 194 | | neqne 2948 |
. . . . 5
⊢ (¬
𝑌 = ∅ → 𝑌 ≠ ∅) |
| 195 | 194 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑌 = ∅) → 𝑌 ≠ ∅) |
| 196 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑗(𝜑 ∧ 𝑌 ≠ ∅) |
| 197 | 183 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → 1 ∈
ℤ) |
| 198 | | nnuz 12921 |
. . . . . 6
⊢ ℕ =
(ℤ≥‘1) |
| 199 | 114 | adantlr 715 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑌 ≠ ∅) ∧ 𝑗 ∈ ℕ) → (𝑃‘𝑗) ∈ (0[,)+∞)) |
| 200 | | hoidmvlelem3.a |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴:𝑊⟶ℝ) |
| 201 | 66 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑌 ⊆ 𝑊) |
| 202 | 200, 201 | fssresd 6775 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 ↾ 𝑌):𝑌⟶ℝ) |
| 203 | | hoidmvlelem3.b |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵:𝑊⟶ℝ) |
| 204 | 203, 201 | fssresd 6775 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐵 ↾ 𝑌):𝑌⟶ℝ) |
| 205 | 18, 58, 202, 204 | hoidmvcl 46597 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ∈ (0[,)+∞)) |
| 206 | 28, 205 | sselid 3981 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ∈ ℝ) |
| 207 | 5, 206 | eqeltrid 2845 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ ℝ) |
| 208 | | 0red 11264 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈
ℝ) |
| 209 | | 1rp 13038 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℝ+ |
| 210 | 209 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ∈
ℝ+) |
| 211 | 210, 172 | jca 511 |
. . . . . . . . . . 11
⊢ (𝜑 → (1 ∈
ℝ+ ∧ 𝐸
∈ ℝ+)) |
| 212 | | rpaddcl 13057 |
. . . . . . . . . . 11
⊢ ((1
∈ ℝ+ ∧ 𝐸 ∈ ℝ+) → (1 +
𝐸) ∈
ℝ+) |
| 213 | 211, 212 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (1 + 𝐸) ∈
ℝ+) |
| 214 | | rpgt0 13047 |
. . . . . . . . . 10
⊢ ((1 +
𝐸) ∈
ℝ+ → 0 < (1 + 𝐸)) |
| 215 | 213, 214 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 0 < (1 + 𝐸)) |
| 216 | 208, 215 | gtned 11396 |
. . . . . . . 8
⊢ (𝜑 → (1 + 𝐸) ≠ 0) |
| 217 | 207, 174,
216 | redivcld 12095 |
. . . . . . 7
⊢ (𝜑 → (𝐺 / (1 + 𝐸)) ∈ ℝ) |
| 218 | 217 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → (𝐺 / (1 + 𝐸)) ∈ ℝ) |
| 219 | 217 | ltpnfd 13163 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺 / (1 + 𝐸)) < +∞) |
| 220 | 219 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) = +∞) → (𝐺 / (1 + 𝐸)) < +∞) |
| 221 | | id 22 |
. . . . . . . . . . 11
⊢
((Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) = +∞ →
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) = +∞) |
| 222 | 221 | eqcomd 2743 |
. . . . . . . . . 10
⊢
((Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) = +∞ → +∞ =
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗)))) |
| 223 | 222 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) = +∞) → +∞ =
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗)))) |
| 224 | 220, 223 | breqtrd 5169 |
. . . . . . . 8
⊢ ((𝜑 ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) = +∞) → (𝐺 / (1 + 𝐸)) <
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗)))) |
| 225 | 224 | adantlr 715 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑌 ≠ ∅) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) = +∞) → (𝐺 / (1 + 𝐸)) <
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗)))) |
| 226 | | simpl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑌 ≠ ∅) ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) = +∞) → (𝜑 ∧ 𝑌 ≠ ∅)) |
| 227 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) = +∞) → ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) = +∞) |
| 228 | | nnex 12272 |
. . . . . . . . . . . 12
⊢ ℕ
∈ V |
| 229 | 228 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) = +∞) → ℕ ∈
V) |
| 230 | | icossicc 13476 |
. . . . . . . . . . . . . 14
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
| 231 | 230, 114 | sselid 3981 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑃‘𝑗) ∈ (0[,]+∞)) |
| 232 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ℕ ↦ (𝑃‘𝑗)) = (𝑗 ∈ ℕ ↦ (𝑃‘𝑗)) |
| 233 | 231, 232 | fmptd 7134 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ (𝑃‘𝑗)):ℕ⟶(0[,]+∞)) |
| 234 | 233 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) = +∞) → (𝑗 ∈ ℕ ↦ (𝑃‘𝑗)):ℕ⟶(0[,]+∞)) |
| 235 | 229, 234 | sge0repnf 46401 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) = +∞) →
((Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) ∈ ℝ ↔ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) = +∞)) |
| 236 | 227, 235 | mpbird 257 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) = +∞) →
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) ∈ ℝ) |
| 237 | 236 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑌 ≠ ∅) ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) = +∞) →
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) ∈ ℝ) |
| 238 | 218 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑌 ≠ ∅) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) ∈ ℝ) → (𝐺 / (1 + 𝐸)) ∈ ℝ) |
| 239 | 207 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) ∈ ℝ) → 𝐺 ∈ ℝ) |
| 240 | 239 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑌 ≠ ∅) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) ∈ ℝ) → 𝐺 ∈ ℝ) |
| 241 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑌 ≠ ∅) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) ∈ ℝ) →
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) ∈ ℝ) |
| 242 | 27, 172 | ltaddrpd 13110 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 < (1 + 𝐸)) |
| 243 | 242 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → 1 < (1 + 𝐸)) |
| 244 | 58 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → 𝑌 ∈ Fin) |
| 245 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → 𝑌 ≠ ∅) |
| 246 | 202 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → (𝐴 ↾ 𝑌):𝑌⟶ℝ) |
| 247 | 204 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → (𝐵 ↾ 𝑌):𝑌⟶ℝ) |
| 248 | 18, 244, 245, 246, 247 | hoidmvn0val 46599 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) = ∏𝑘 ∈ 𝑌 (vol‘(((𝐴 ↾ 𝑌)‘𝑘)[,)((𝐵 ↾ 𝑌)‘𝑘)))) |
| 249 | 5 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → 𝐺 = ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌))) |
| 250 | | fvres 6925 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ 𝑌 → ((𝐴 ↾ 𝑌)‘𝑘) = (𝐴‘𝑘)) |
| 251 | | fvres 6925 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ 𝑌 → ((𝐵 ↾ 𝑌)‘𝑘) = (𝐵‘𝑘)) |
| 252 | 250, 251 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ 𝑌 → (((𝐴 ↾ 𝑌)‘𝑘)[,)((𝐵 ↾ 𝑌)‘𝑘)) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| 253 | 252 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ 𝑌 → (vol‘(((𝐴 ↾ 𝑌)‘𝑘)[,)((𝐵 ↾ 𝑌)‘𝑘))) = (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
| 254 | 253 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → (vol‘(((𝐴 ↾ 𝑌)‘𝑘)[,)((𝐵 ↾ 𝑌)‘𝑘))) = (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
| 255 | 200 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → 𝐴:𝑊⟶ℝ) |
| 256 | | elun1 4182 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ 𝑌 → 𝑘 ∈ (𝑌 ∪ {𝑍})) |
| 257 | 256, 44 | eleqtrrdi 2852 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ 𝑌 → 𝑘 ∈ 𝑊) |
| 258 | 257 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → 𝑘 ∈ 𝑊) |
| 259 | 255, 258 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → (𝐴‘𝑘) ∈ ℝ) |
| 260 | 203 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → 𝐵:𝑊⟶ℝ) |
| 261 | 260, 258 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → (𝐵‘𝑘) ∈ ℝ) |
| 262 | | volico 45998 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴‘𝑘) ∈ ℝ ∧ (𝐵‘𝑘) ∈ ℝ) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = if((𝐴‘𝑘) < (𝐵‘𝑘), ((𝐵‘𝑘) − (𝐴‘𝑘)), 0)) |
| 263 | 259, 261,
262 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = if((𝐴‘𝑘) < (𝐵‘𝑘), ((𝐵‘𝑘) − (𝐴‘𝑘)), 0)) |
| 264 | | hoidmvlelem3.lt |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → (𝐴‘𝑘) < (𝐵‘𝑘)) |
| 265 | 258, 264 | syldan 591 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → (𝐴‘𝑘) < (𝐵‘𝑘)) |
| 266 | 265 | iftrued 4533 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → if((𝐴‘𝑘) < (𝐵‘𝑘), ((𝐵‘𝑘) − (𝐴‘𝑘)), 0) = ((𝐵‘𝑘) − (𝐴‘𝑘))) |
| 267 | 254, 263,
266 | 3eqtrd 2781 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → (vol‘(((𝐴 ↾ 𝑌)‘𝑘)[,)((𝐵 ↾ 𝑌)‘𝑘))) = ((𝐵‘𝑘) − (𝐴‘𝑘))) |
| 268 | 267 | prodeq2dv 15958 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∏𝑘 ∈ 𝑌 (vol‘(((𝐴 ↾ 𝑌)‘𝑘)[,)((𝐵 ↾ 𝑌)‘𝑘))) = ∏𝑘 ∈ 𝑌 ((𝐵‘𝑘) − (𝐴‘𝑘))) |
| 269 | 268 | eqcomd 2743 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∏𝑘 ∈ 𝑌 ((𝐵‘𝑘) − (𝐴‘𝑘)) = ∏𝑘 ∈ 𝑌 (vol‘(((𝐴 ↾ 𝑌)‘𝑘)[,)((𝐵 ↾ 𝑌)‘𝑘)))) |
| 270 | 269 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → ∏𝑘 ∈ 𝑌 ((𝐵‘𝑘) − (𝐴‘𝑘)) = ∏𝑘 ∈ 𝑌 (vol‘(((𝐴 ↾ 𝑌)‘𝑘)[,)((𝐵 ↾ 𝑌)‘𝑘)))) |
| 271 | 248, 249,
270 | 3eqtr4d 2787 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → 𝐺 = ∏𝑘 ∈ 𝑌 ((𝐵‘𝑘) − (𝐴‘𝑘))) |
| 272 | | difrp 13073 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴‘𝑘) ∈ ℝ ∧ (𝐵‘𝑘) ∈ ℝ) → ((𝐴‘𝑘) < (𝐵‘𝑘) ↔ ((𝐵‘𝑘) − (𝐴‘𝑘)) ∈
ℝ+)) |
| 273 | 259, 261,
272 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → ((𝐴‘𝑘) < (𝐵‘𝑘) ↔ ((𝐵‘𝑘) − (𝐴‘𝑘)) ∈
ℝ+)) |
| 274 | 265, 273 | mpbid 232 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → ((𝐵‘𝑘) − (𝐴‘𝑘)) ∈
ℝ+) |
| 275 | 58, 274 | fprodrpcl 15992 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∏𝑘 ∈ 𝑌 ((𝐵‘𝑘) − (𝐴‘𝑘)) ∈
ℝ+) |
| 276 | 275 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → ∏𝑘 ∈ 𝑌 ((𝐵‘𝑘) − (𝐴‘𝑘)) ∈
ℝ+) |
| 277 | 271, 276 | eqeltrd 2841 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → 𝐺 ∈
ℝ+) |
| 278 | 213 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → (1 + 𝐸) ∈
ℝ+) |
| 279 | 277, 278 | ltdivgt1 45367 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → (1 < (1 + 𝐸) ↔ (𝐺 / (1 + 𝐸)) < 𝐺)) |
| 280 | 243, 279 | mpbid 232 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → (𝐺 / (1 + 𝐸)) < 𝐺) |
| 281 | 280 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑌 ≠ ∅) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) ∈ ℝ) → (𝐺 / (1 + 𝐸)) < 𝐺) |
| 282 | | hoidmvlelem3.i2 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → X𝑘 ∈
𝑊 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 283 | 282 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → X𝑘 ∈ 𝑊 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 284 | | fvexd 6921 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (𝑥‘𝑘) ∈ V) |
| 285 | | hoidmvlelem3.s |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝑆 ∈ 𝑈) |
| 286 | 285 | elexd 3504 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝑆 ∈ V) |
| 287 | 284, 286 | ifcld 4572 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) ∈ V) |
| 288 | 287 | ralrimivw 3150 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → ∀𝑘 ∈ 𝑊 if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) ∈ V) |
| 289 | 288 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → ∀𝑘 ∈ 𝑊 if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) ∈ V) |
| 290 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) = (𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) |
| 291 | 290 | fnmpt 6708 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∀𝑘 ∈
𝑊 if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) ∈ V → (𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) Fn 𝑊) |
| 292 | 289, 291 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → (𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) Fn 𝑊) |
| 293 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| 294 | | mptexg 7241 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑊 ∈ Fin → (𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) ∈ V) |
| 295 | 53, 294 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) ∈ V) |
| 296 | 295 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → (𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) ∈ V) |
| 297 | | hoidmvlelem3.o |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 𝑂 = (𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ↦ (𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆))) |
| 298 | 297 | fvmpt2 7027 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ∧ (𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) ∈ V) → (𝑂‘𝑥) = (𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆))) |
| 299 | 293, 296,
298 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → (𝑂‘𝑥) = (𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆))) |
| 300 | 299 | fneq1d 6661 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → ((𝑂‘𝑥) Fn 𝑊 ↔ (𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) Fn 𝑊)) |
| 301 | 292, 300 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → (𝑂‘𝑥) Fn 𝑊) |
| 302 | | nfv 1914 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘𝜑 |
| 303 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑘𝑥 |
| 304 | | nfixp1 8958 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑘X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) |
| 305 | 303, 304 | nfel 2920 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘 𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) |
| 306 | 302, 305 | nfan 1899 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘(𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| 307 | 299 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → ((𝑂‘𝑥)‘𝑘) = ((𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆))‘𝑘)) |
| 308 | 307 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑘 ∈ 𝑊) → ((𝑂‘𝑥)‘𝑘) = ((𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆))‘𝑘)) |
| 309 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → 𝑘 ∈ 𝑊) |
| 310 | 287 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) ∈ V) |
| 311 | 290 | fvmpt2 7027 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑘 ∈ 𝑊 ∧ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) ∈ V) → ((𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆))‘𝑘) = if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) |
| 312 | 309, 310,
311 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → ((𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆))‘𝑘) = if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) |
| 313 | 312 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑘 ∈ 𝑊) → ((𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆))‘𝑘) = if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) |
| 314 | 308, 313 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑘 ∈ 𝑊) → ((𝑂‘𝑥)‘𝑘) = if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) |
| 315 | | iftrue 4531 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑘 ∈ 𝑌 → if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) = (𝑥‘𝑘)) |
| 316 | 315 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑘 ∈ 𝑊) ∧ 𝑘 ∈ 𝑌) → if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) = (𝑥‘𝑘)) |
| 317 | | vex 3484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ 𝑥 ∈ V |
| 318 | 317 | elixp 8944 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ↔ (𝑥 Fn 𝑌 ∧ ∀𝑘 ∈ 𝑌 (𝑥‘𝑘) ∈ ((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
| 319 | 318 | simprbi 496 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) → ∀𝑘 ∈ 𝑌 (𝑥‘𝑘) ∈ ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| 320 | 319 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ∧ 𝑘 ∈ 𝑌) → ∀𝑘 ∈ 𝑌 (𝑥‘𝑘) ∈ ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| 321 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ∧ 𝑘 ∈ 𝑌) → 𝑘 ∈ 𝑌) |
| 322 | | rspa 3248 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((∀𝑘 ∈
𝑌 (𝑥‘𝑘) ∈ ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ∧ 𝑘 ∈ 𝑌) → (𝑥‘𝑘) ∈ ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| 323 | 320, 321,
322 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ∧ 𝑘 ∈ 𝑌) → (𝑥‘𝑘) ∈ ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| 324 | 323 | ad4ant24 754 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑘 ∈ 𝑊) ∧ 𝑘 ∈ 𝑌) → (𝑥‘𝑘) ∈ ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| 325 | 316, 324 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑘 ∈ 𝑊) ∧ 𝑘 ∈ 𝑌) → if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) ∈ ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| 326 | | snidg 4660 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑍 ∈ (𝑋 ∖ 𝑌) → 𝑍 ∈ {𝑍}) |
| 327 | 47, 326 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝜑 → 𝑍 ∈ {𝑍}) |
| 328 | | elun2 4183 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑍 ∈ {𝑍} → 𝑍 ∈ (𝑌 ∪ {𝑍})) |
| 329 | 327, 328 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → 𝑍 ∈ (𝑌 ∪ {𝑍})) |
| 330 | 55 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → (𝑌 ∪ {𝑍}) = 𝑊) |
| 331 | 329, 330 | eleqtrd 2843 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → 𝑍 ∈ 𝑊) |
| 332 | 200, 331 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → (𝐴‘𝑍) ∈ ℝ) |
| 333 | 332 | rexrd 11311 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → (𝐴‘𝑍) ∈
ℝ*) |
| 334 | 203, 331 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → (𝐵‘𝑍) ∈ ℝ) |
| 335 | 334 | rexrd 11311 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → (𝐵‘𝑍) ∈
ℝ*) |
| 336 | | iccssxr 13470 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ⊆
ℝ* |
| 337 | | hoidmvlelem3.u |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ 𝑈 = {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} |
| 338 | | ssrab2 4080 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} ⊆ ((𝐴‘𝑍)[,](𝐵‘𝑍)) |
| 339 | 337, 338 | eqsstri 4030 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ 𝑈 ⊆ ((𝐴‘𝑍)[,](𝐵‘𝑍)) |
| 340 | 339, 285 | sselid 3981 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → 𝑆 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) |
| 341 | 336, 340 | sselid 3981 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → 𝑆 ∈
ℝ*) |
| 342 | | iccgelb 13443 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝐴‘𝑍) ∈ ℝ* ∧ (𝐵‘𝑍) ∈ ℝ* ∧ 𝑆 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) → (𝐴‘𝑍) ≤ 𝑆) |
| 343 | 333, 335,
340, 342 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → (𝐴‘𝑍) ≤ 𝑆) |
| 344 | | hoidmvlelem3.sb |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → 𝑆 < (𝐵‘𝑍)) |
| 345 | 333, 335,
341, 343, 344 | elicod 13437 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → 𝑆 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) |
| 346 | 345 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑊) ∧ ¬ 𝑘 ∈ 𝑌) → 𝑆 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) |
| 347 | | iffalse 4534 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (¬
𝑘 ∈ 𝑌 → if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) = 𝑆) |
| 348 | 347 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑊) ∧ ¬ 𝑘 ∈ 𝑌) → if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) = 𝑆) |
| 349 | 44 | eleq2i 2833 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑘 ∈ 𝑊 ↔ 𝑘 ∈ (𝑌 ∪ {𝑍})) |
| 350 | 349 | biimpi 216 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑘 ∈ 𝑊 → 𝑘 ∈ (𝑌 ∪ {𝑍})) |
| 351 | 350 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑘 ∈ 𝑊 ∧ ¬ 𝑘 ∈ 𝑌) → 𝑘 ∈ (𝑌 ∪ {𝑍})) |
| 352 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑘 ∈ 𝑊 ∧ ¬ 𝑘 ∈ 𝑌) → ¬ 𝑘 ∈ 𝑌) |
| 353 | | elunnel1 4154 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑘 ∈ (𝑌 ∪ {𝑍}) ∧ ¬ 𝑘 ∈ 𝑌) → 𝑘 ∈ {𝑍}) |
| 354 | 351, 352,
353 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑘 ∈ 𝑊 ∧ ¬ 𝑘 ∈ 𝑌) → 𝑘 ∈ {𝑍}) |
| 355 | | elsni 4643 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑘 ∈ {𝑍} → 𝑘 = 𝑍) |
| 356 | 354, 355 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑘 ∈ 𝑊 ∧ ¬ 𝑘 ∈ 𝑌) → 𝑘 = 𝑍) |
| 357 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑘 = 𝑍 → (𝐴‘𝑘) = (𝐴‘𝑍)) |
| 358 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑘 = 𝑍 → (𝐵‘𝑘) = (𝐵‘𝑍)) |
| 359 | 357, 358 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑘 = 𝑍 → ((𝐴‘𝑘)[,)(𝐵‘𝑘)) = ((𝐴‘𝑍)[,)(𝐵‘𝑍))) |
| 360 | 356, 359 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑘 ∈ 𝑊 ∧ ¬ 𝑘 ∈ 𝑌) → ((𝐴‘𝑘)[,)(𝐵‘𝑘)) = ((𝐴‘𝑍)[,)(𝐵‘𝑍))) |
| 361 | 360 | adantll 714 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑊) ∧ ¬ 𝑘 ∈ 𝑌) → ((𝐴‘𝑘)[,)(𝐵‘𝑘)) = ((𝐴‘𝑍)[,)(𝐵‘𝑍))) |
| 362 | 348, 361 | eleq12d 2835 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑊) ∧ ¬ 𝑘 ∈ 𝑌) → (if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) ∈ ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ↔ 𝑆 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍)))) |
| 363 | 346, 362 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑊) ∧ ¬ 𝑘 ∈ 𝑌) → if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) ∈ ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| 364 | 363 | adantllr 719 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑘 ∈ 𝑊) ∧ ¬ 𝑘 ∈ 𝑌) → if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) ∈ ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| 365 | 325, 364 | pm2.61dan 813 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑘 ∈ 𝑊) → if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) ∈ ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| 366 | 314, 365 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑘 ∈ 𝑊) → ((𝑂‘𝑥)‘𝑘) ∈ ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| 367 | 366 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → (𝑘 ∈ 𝑊 → ((𝑂‘𝑥)‘𝑘) ∈ ((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
| 368 | 306, 367 | ralrimi 3257 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → ∀𝑘 ∈ 𝑊 ((𝑂‘𝑥)‘𝑘) ∈ ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| 369 | 301, 368 | jca 511 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → ((𝑂‘𝑥) Fn 𝑊 ∧ ∀𝑘 ∈ 𝑊 ((𝑂‘𝑥)‘𝑘) ∈ ((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
| 370 | | fvex 6919 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑂‘𝑥) ∈ V |
| 371 | 370 | elixp 8944 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ↔ ((𝑂‘𝑥) Fn 𝑊 ∧ ∀𝑘 ∈ 𝑊 ((𝑂‘𝑥)‘𝑘) ∈ ((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
| 372 | 369, 371 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| 373 | 283, 372 | sseldd 3984 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → (𝑂‘𝑥) ∈ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 374 | | eliun 4995 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑂‘𝑥) ∈ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ↔ ∃𝑗 ∈ ℕ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 375 | 373, 374 | sylib 218 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → ∃𝑗 ∈ ℕ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 376 | | ixpfn 8943 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) → 𝑥 Fn 𝑌) |
| 377 | 376 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → 𝑥 Fn 𝑌) |
| 378 | 377 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → 𝑥 Fn 𝑌) |
| 379 | | nfv 1914 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑘 𝑗 ∈ ℕ |
| 380 | 306, 379 | nfan 1899 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) |
| 381 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑘(𝑂‘𝑥) |
| 382 | | nfixp1 8958 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑘X𝑘 ∈
𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) |
| 383 | 381, 382 | nfel 2920 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘(𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) |
| 384 | 380, 383 | nfan 1899 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘(((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 385 | 307 | 3adant3 1133 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ∧ 𝑘 ∈ 𝑌) → ((𝑂‘𝑥)‘𝑘) = ((𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆))‘𝑘)) |
| 386 | 287 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) ∈ V) |
| 387 | 258, 386,
311 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → ((𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆))‘𝑘) = if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) |
| 388 | 387 | 3adant2 1132 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ∧ 𝑘 ∈ 𝑌) → ((𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆))‘𝑘) = if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) |
| 389 | 315 | 3ad2ant3 1136 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ∧ 𝑘 ∈ 𝑌) → if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) = (𝑥‘𝑘)) |
| 390 | 385, 388,
389 | 3eqtrrd 2782 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ∧ 𝑘 ∈ 𝑌) → (𝑥‘𝑘) = ((𝑂‘𝑥)‘𝑘)) |
| 391 | 390 | ad5ant125 1368 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑌) → (𝑥‘𝑘) = ((𝑂‘𝑥)‘𝑘)) |
| 392 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ∧ 𝑘 ∈ 𝑌) → (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 393 | 370 | elixp 8944 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ↔ ((𝑂‘𝑥) Fn 𝑊 ∧ ∀𝑘 ∈ 𝑊 ((𝑂‘𝑥)‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
| 394 | 392, 393 | sylib 218 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ∧ 𝑘 ∈ 𝑌) → ((𝑂‘𝑥) Fn 𝑊 ∧ ∀𝑘 ∈ 𝑊 ((𝑂‘𝑥)‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
| 395 | 394 | simprd 495 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ∧ 𝑘 ∈ 𝑌) → ∀𝑘 ∈ 𝑊 ((𝑂‘𝑥)‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 396 | 257 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ∧ 𝑘 ∈ 𝑌) → 𝑘 ∈ 𝑊) |
| 397 | | rspa 3248 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((∀𝑘 ∈
𝑊 ((𝑂‘𝑥)‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ∧ 𝑘 ∈ 𝑊) → ((𝑂‘𝑥)‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 398 | 395, 396,
397 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ∧ 𝑘 ∈ 𝑌) → ((𝑂‘𝑥)‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 399 | 398 | adantll 714 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑌) → ((𝑂‘𝑥)‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 400 | 391, 399 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑌) → (𝑥‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 401 | 29 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → 𝜑) |
| 402 | 37 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → 𝑗 ∈ ℕ) |
| 403 | 299 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → ((𝑂‘𝑥)‘𝑍) = ((𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆))‘𝑍)) |
| 404 | | eqidd 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝜑 → (𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) = (𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆))) |
| 405 | | eleq1 2829 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑘 = 𝑍 → (𝑘 ∈ 𝑌 ↔ 𝑍 ∈ 𝑌)) |
| 406 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑘 = 𝑍 → (𝑥‘𝑘) = (𝑥‘𝑍)) |
| 407 | 405, 406 | ifbieq1d 4550 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑘 = 𝑍 → if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) = if(𝑍 ∈ 𝑌, (𝑥‘𝑍), 𝑆)) |
| 408 | 407 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝜑 ∧ 𝑘 = 𝑍) → if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) = if(𝑍 ∈ 𝑌, (𝑥‘𝑍), 𝑆)) |
| 409 | | fvexd 6921 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝜑 → (𝑥‘𝑍) ∈ V) |
| 410 | 409, 286 | ifcld 4572 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝜑 → if(𝑍 ∈ 𝑌, (𝑥‘𝑍), 𝑆) ∈ V) |
| 411 | 404, 408,
331, 410 | fvmptd 7023 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝜑 → ((𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆))‘𝑍) = if(𝑍 ∈ 𝑌, (𝑥‘𝑍), 𝑆)) |
| 412 | 411 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → ((𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆))‘𝑍) = if(𝑍 ∈ 𝑌, (𝑥‘𝑍), 𝑆)) |
| 413 | 47 | eldifbd 3964 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝜑 → ¬ 𝑍 ∈ 𝑌) |
| 414 | 413 | iffalsed 4536 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝜑 → if(𝑍 ∈ 𝑌, (𝑥‘𝑍), 𝑆) = 𝑆) |
| 415 | 414 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → if(𝑍 ∈ 𝑌, (𝑥‘𝑍), 𝑆) = 𝑆) |
| 416 | 403, 412,
415 | 3eqtrrd 2782 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → 𝑆 = ((𝑂‘𝑥)‘𝑍)) |
| 417 | 416 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → 𝑆 = ((𝑂‘𝑥)‘𝑍)) |
| 418 | 401, 331 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → 𝑍 ∈ 𝑊) |
| 419 | 393 | simprbi 496 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → ∀𝑘 ∈ 𝑊 ((𝑂‘𝑥)‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 420 | 419 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → ∀𝑘 ∈ 𝑊 ((𝑂‘𝑥)‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 421 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑘 = 𝑍 → ((𝑂‘𝑥)‘𝑘) = ((𝑂‘𝑥)‘𝑍)) |
| 422 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑘 = 𝑍 → ((𝐶‘𝑗)‘𝑘) = ((𝐶‘𝑗)‘𝑍)) |
| 423 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑘 = 𝑍 → ((𝐷‘𝑗)‘𝑘) = ((𝐷‘𝑗)‘𝑍)) |
| 424 | 422, 423 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑘 = 𝑍 → (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
| 425 | 421, 424 | eleq12d 2835 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑘 = 𝑍 → (((𝑂‘𝑥)‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ↔ ((𝑂‘𝑥)‘𝑍) ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))) |
| 426 | 425 | rspcva 3620 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑍 ∈ 𝑊 ∧ ∀𝑘 ∈ 𝑊 ((𝑂‘𝑥)‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → ((𝑂‘𝑥)‘𝑍) ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
| 427 | 418, 420,
426 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → ((𝑂‘𝑥)‘𝑍) ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
| 428 | 417, 427 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
| 429 | 149 | 3adant3 1133 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → (𝐽‘𝑗) = if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹)) |
| 430 | 60 | 3ad2ant3 1136 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) = ((𝐶‘𝑗) ↾ 𝑌)) |
| 431 | 429, 430 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → (𝐽‘𝑗) = ((𝐶‘𝑗) ↾ 𝑌)) |
| 432 | 431 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → ((𝐽‘𝑗)‘𝑘) = (((𝐶‘𝑗) ↾ 𝑌)‘𝑘)) |
| 433 | 401, 402,
428, 432 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → ((𝐽‘𝑗)‘𝑘) = (((𝐶‘𝑗) ↾ 𝑌)‘𝑘)) |
| 434 | 433 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑌) → ((𝐽‘𝑗)‘𝑘) = (((𝐶‘𝑗) ↾ 𝑌)‘𝑘)) |
| 435 | | fvres 6925 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑘 ∈ 𝑌 → (((𝐶‘𝑗) ↾ 𝑌)‘𝑘) = ((𝐶‘𝑗)‘𝑘)) |
| 436 | 435 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑌) → (((𝐶‘𝑗) ↾ 𝑌)‘𝑘) = ((𝐶‘𝑗)‘𝑘)) |
| 437 | 434, 436 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑌) → ((𝐽‘𝑗)‘𝑘) = ((𝐶‘𝑗)‘𝑘)) |
| 438 | 107 | elexd 3504 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹) ∈ V) |
| 439 | 108 | fvmpt2 7027 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑗 ∈ ℕ ∧ if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹) ∈ V) → (𝐾‘𝑗) = if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹)) |
| 440 | 139, 438,
439 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐾‘𝑗) = if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹)) |
| 441 | 440 | 3adant3 1133 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → (𝐾‘𝑗) = if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹)) |
| 442 | 93 | 3ad2ant3 1136 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹) = ((𝐷‘𝑗) ↾ 𝑌)) |
| 443 | 441, 442 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → (𝐾‘𝑗) = ((𝐷‘𝑗) ↾ 𝑌)) |
| 444 | 443 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → ((𝐾‘𝑗)‘𝑘) = (((𝐷‘𝑗) ↾ 𝑌)‘𝑘)) |
| 445 | 401, 402,
428, 444 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → ((𝐾‘𝑗)‘𝑘) = (((𝐷‘𝑗) ↾ 𝑌)‘𝑘)) |
| 446 | 445 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑌) → ((𝐾‘𝑗)‘𝑘) = (((𝐷‘𝑗) ↾ 𝑌)‘𝑘)) |
| 447 | | fvres 6925 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑘 ∈ 𝑌 → (((𝐷‘𝑗) ↾ 𝑌)‘𝑘) = ((𝐷‘𝑗)‘𝑘)) |
| 448 | 447 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑌) → (((𝐷‘𝑗) ↾ 𝑌)‘𝑘) = ((𝐷‘𝑗)‘𝑘)) |
| 449 | 446, 448 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑌) → ((𝐾‘𝑗)‘𝑘) = ((𝐷‘𝑗)‘𝑘)) |
| 450 | 437, 449 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑌) → (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘)) = (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 451 | 450 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑌) → (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘))) |
| 452 | 400, 451 | eleqtrd 2843 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑌) → (𝑥‘𝑘) ∈ (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘))) |
| 453 | 452 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → (𝑘 ∈ 𝑌 → (𝑥‘𝑘) ∈ (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘)))) |
| 454 | 384, 453 | ralrimi 3257 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → ∀𝑘 ∈ 𝑌 (𝑥‘𝑘) ∈ (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘))) |
| 455 | 378, 454 | jca 511 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → (𝑥 Fn 𝑌 ∧ ∀𝑘 ∈ 𝑌 (𝑥‘𝑘) ∈ (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘)))) |
| 456 | 317 | elixp 8944 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ X𝑘 ∈
𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘)) ↔ (𝑥 Fn 𝑌 ∧ ∀𝑘 ∈ 𝑌 (𝑥‘𝑘) ∈ (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘)))) |
| 457 | 455, 456 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → 𝑥 ∈ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘))) |
| 458 | 457 | ex 412 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) → ((𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → 𝑥 ∈ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘)))) |
| 459 | 458 | reximdva 3168 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → (∃𝑗 ∈ ℕ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → ∃𝑗 ∈ ℕ 𝑥 ∈ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘)))) |
| 460 | 375, 459 | mpd 15 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → ∃𝑗 ∈ ℕ 𝑥 ∈ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘))) |
| 461 | | eliun 4995 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘)) ↔ ∃𝑗 ∈ ℕ 𝑥 ∈ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘))) |
| 462 | 460, 461 | sylibr 234 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → 𝑥 ∈ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘))) |
| 463 | 462 | ralrimiva 3146 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑥 ∈ X 𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))𝑥 ∈ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘))) |
| 464 | | dfss3 3972 |
. . . . . . . . . . . . . . 15
⊢ (X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘)) ↔ ∀𝑥 ∈ X 𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))𝑥 ∈ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘))) |
| 465 | 463, 464 | sylibr 234 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘))) |
| 466 | | ovexd 7466 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (ℝ
↑m 𝑌)
∈ V) |
| 467 | 228 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ℕ ∈
V) |
| 468 | 466, 467 | elmapd 8880 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐾 ∈ ((ℝ ↑m 𝑌) ↑m ℕ)
↔ 𝐾:ℕ⟶(ℝ ↑m
𝑌))) |
| 469 | 109, 468 | mpbird 257 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐾 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)) |
| 470 | 466, 467 | elmapd 8880 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐽 ∈ ((ℝ ↑m 𝑌) ↑m ℕ)
↔ 𝐽:ℕ⟶(ℝ ↑m
𝑌))) |
| 471 | 89, 470 | mpbird 257 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐽 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)) |
| 472 | 82, 71 | elmapd 8880 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝐵 ↾ 𝑌) ∈ (ℝ ↑m 𝑌) ↔ (𝐵 ↾ 𝑌):𝑌⟶ℝ)) |
| 473 | 204, 472 | mpbird 257 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐵 ↾ 𝑌) ∈ (ℝ ↑m 𝑌)) |
| 474 | 82, 71 | elmapd 8880 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝐴 ↾ 𝑌) ∈ (ℝ ↑m 𝑌) ↔ (𝐴 ↾ 𝑌):𝑌⟶ℝ)) |
| 475 | 202, 474 | mpbird 257 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐴 ↾ 𝑌) ∈ (ℝ ↑m 𝑌)) |
| 476 | | hoidmvlelem3.i |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑒 ∈ (ℝ ↑m 𝑌)∀𝑓 ∈ (ℝ ↑m 𝑌)∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘 ∈
𝑌 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) |
| 477 | | fveq1 6905 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑒 = (𝐴 ↾ 𝑌) → (𝑒‘𝑘) = ((𝐴 ↾ 𝑌)‘𝑘)) |
| 478 | 477 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑒 = (𝐴 ↾ 𝑌) ∧ 𝑘 ∈ 𝑌) → (𝑒‘𝑘) = ((𝐴 ↾ 𝑌)‘𝑘)) |
| 479 | 250 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑒 = (𝐴 ↾ 𝑌) ∧ 𝑘 ∈ 𝑌) → ((𝐴 ↾ 𝑌)‘𝑘) = (𝐴‘𝑘)) |
| 480 | 478, 479 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑒 = (𝐴 ↾ 𝑌) ∧ 𝑘 ∈ 𝑌) → (𝑒‘𝑘) = (𝐴‘𝑘)) |
| 481 | 480 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑒 = (𝐴 ↾ 𝑌) ∧ 𝑘 ∈ 𝑌) → ((𝑒‘𝑘)[,)(𝑓‘𝑘)) = ((𝐴‘𝑘)[,)(𝑓‘𝑘))) |
| 482 | 481 | ixpeq2dva 8952 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑒 = (𝐴 ↾ 𝑌) → X𝑘 ∈ 𝑌 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) = X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝑓‘𝑘))) |
| 483 | 482 | sseq1d 4015 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑒 = (𝐴 ↾ 𝑌) → (X𝑘 ∈ 𝑌 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) ↔ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)))) |
| 484 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑒 = (𝐴 ↾ 𝑌) → (𝑒(𝐿‘𝑌)𝑓) = ((𝐴 ↾ 𝑌)(𝐿‘𝑌)𝑓)) |
| 485 | 484 | breq1d 5153 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑒 = (𝐴 ↾ 𝑌) → ((𝑒(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))) ↔ ((𝐴 ↾ 𝑌)(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) |
| 486 | 483, 485 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑒 = (𝐴 ↾ 𝑌) → ((X𝑘 ∈ 𝑌 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))) ↔ (X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))))) |
| 487 | 486 | ralbidv 3178 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑒 = (𝐴 ↾ 𝑌) → (∀ℎ ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)(X𝑘 ∈ 𝑌 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))) ↔ ∀ℎ ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)(X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))))) |
| 488 | 487 | ralbidv 3178 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑒 = (𝐴 ↾ 𝑌) → (∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘 ∈
𝑌 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))) ↔ ∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))))) |
| 489 | 488 | ralbidv 3178 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑒 = (𝐴 ↾ 𝑌) → (∀𝑓 ∈ (ℝ ↑m 𝑌)∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘 ∈
𝑌 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))) ↔ ∀𝑓 ∈ (ℝ ↑m 𝑌)∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))))) |
| 490 | 489 | rspcva 3620 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ↾ 𝑌) ∈ (ℝ ↑m 𝑌) ∧ ∀𝑒 ∈ (ℝ
↑m 𝑌)∀𝑓 ∈ (ℝ ↑m 𝑌)∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘 ∈
𝑌 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) → ∀𝑓 ∈ (ℝ ↑m 𝑌)∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) |
| 491 | 475, 476,
490 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑓 ∈ (ℝ ↑m 𝑌)∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) |
| 492 | | fveq1 6905 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑓 = (𝐵 ↾ 𝑌) → (𝑓‘𝑘) = ((𝐵 ↾ 𝑌)‘𝑘)) |
| 493 | 492 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑓 = (𝐵 ↾ 𝑌) ∧ 𝑘 ∈ 𝑌) → (𝑓‘𝑘) = ((𝐵 ↾ 𝑌)‘𝑘)) |
| 494 | 251 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑓 = (𝐵 ↾ 𝑌) ∧ 𝑘 ∈ 𝑌) → ((𝐵 ↾ 𝑌)‘𝑘) = (𝐵‘𝑘)) |
| 495 | 493, 494 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑓 = (𝐵 ↾ 𝑌) ∧ 𝑘 ∈ 𝑌) → (𝑓‘𝑘) = (𝐵‘𝑘)) |
| 496 | 495 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓 = (𝐵 ↾ 𝑌) ∧ 𝑘 ∈ 𝑌) → ((𝐴‘𝑘)[,)(𝑓‘𝑘)) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| 497 | 496 | ixpeq2dva 8952 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 = (𝐵 ↾ 𝑌) → X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝑓‘𝑘)) = X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| 498 | 497 | sseq1d 4015 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 = (𝐵 ↾ 𝑌) → (X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) ↔ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)))) |
| 499 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 = (𝐵 ↾ 𝑌) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)𝑓) = ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌))) |
| 500 | 499 | breq1d 5153 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 = (𝐵 ↾ 𝑌) → (((𝐴 ↾ 𝑌)(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))) ↔ ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) |
| 501 | 498, 500 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = (𝐵 ↾ 𝑌) → ((X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))) ↔ (X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))))) |
| 502 | 501 | ralbidv 3178 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = (𝐵 ↾ 𝑌) → (∀ℎ ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)(X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))) ↔ ∀ℎ ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)(X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))))) |
| 503 | 502 | ralbidv 3178 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = (𝐵 ↾ 𝑌) → (∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))) ↔ ∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))))) |
| 504 | 503 | rspcva 3620 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐵 ↾ 𝑌) ∈ (ℝ ↑m 𝑌) ∧ ∀𝑓 ∈ (ℝ
↑m 𝑌)∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) → ∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) |
| 505 | 473, 491,
504 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) |
| 506 | | fveq1 6905 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑔 = 𝐽 → (𝑔‘𝑗) = (𝐽‘𝑗)) |
| 507 | 506 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑔 = 𝐽 → ((𝑔‘𝑗)‘𝑘) = ((𝐽‘𝑗)‘𝑘)) |
| 508 | 507 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑔 = 𝐽 → (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) = (((𝐽‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘))) |
| 509 | 508 | ixpeq2dv 8953 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔 = 𝐽 → X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) = X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘))) |
| 510 | 509 | iuneq2d 5022 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔 = 𝐽 → ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) = ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑌 (((𝐽‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘))) |
| 511 | 510 | sseq2d 4016 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑔 = 𝐽 → (X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) ↔ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)))) |
| 512 | 506 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑔 = 𝐽 → ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)) = ((𝐽‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))) |
| 513 | 512 | mpteq2dv 5244 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔 = 𝐽 → (𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))) = (𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))) |
| 514 | 513 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔 = 𝐽 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))) |
| 515 | 514 | breq2d 5155 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑔 = 𝐽 → (((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))) ↔ ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) |
| 516 | 511, 515 | imbi12d 344 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑔 = 𝐽 → ((X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))) ↔ (X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))))) |
| 517 | 516 | ralbidv 3178 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 = 𝐽 → (∀ℎ ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)(X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))) ↔ ∀ℎ ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)(X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))))) |
| 518 | 517 | rspcva 3620 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐽 ∈ ((ℝ
↑m 𝑌)
↑m ℕ) ∧ ∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) → ∀ℎ ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)(X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) |
| 519 | 471, 505,
518 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀ℎ ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)(X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) |
| 520 | | fveq1 6905 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (ℎ = 𝐾 → (ℎ‘𝑗) = (𝐾‘𝑗)) |
| 521 | 520 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ℎ = 𝐾 → ((ℎ‘𝑗)‘𝑘) = ((𝐾‘𝑗)‘𝑘)) |
| 522 | 521 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (ℎ = 𝐾 → (((𝐽‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) = (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘))) |
| 523 | 522 | ixpeq2dv 8953 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℎ = 𝐾 → X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) = X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘))) |
| 524 | 523 | iuneq2d 5022 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ = 𝐾 → ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑌 (((𝐽‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) = ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘))) |
| 525 | 524 | sseq2d 4016 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = 𝐾 → (X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) ↔ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘)))) |
| 526 | 520 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (ℎ = 𝐾 → ((𝐽‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)) = ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗))) |
| 527 | 526 | mpteq2dv 5244 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℎ = 𝐾 → (𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))) = (𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)))) |
| 528 | 527 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ = 𝐾 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗))))) |
| 529 | 528 | breq2d 5155 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = 𝐾 → (((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))) ↔ ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)))))) |
| 530 | 525, 529 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ = 𝐾 → ((X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))) ↔ (X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗))))))) |
| 531 | 530 | rspcva 3620 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ ((ℝ
↑m 𝑌)
↑m ℕ) ∧ ∀ℎ ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)(X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) → (X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)))))) |
| 532 | 469, 519,
531 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)))))) |
| 533 | 465, 532 | mpd 15 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗))))) |
| 534 | | idd 24 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)))) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)))))) |
| 535 | 533, 534 | mpd 15 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗))))) |
| 536 | 535 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗))))) |
| 537 | 41 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑌 ≠ ∅) ∧ 𝑗 ∈ ℕ) → (𝑃‘𝑗) = ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗))) |
| 538 | 537 | mpteq2dva 5242 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → (𝑗 ∈ ℕ ↦ (𝑃‘𝑗)) = (𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)))) |
| 539 | 538 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) →
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗))))) |
| 540 | 249, 539 | breq12d 5156 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → (𝐺 ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) ↔ ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)))))) |
| 541 | 536, 540 | mpbird 257 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → 𝐺 ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗)))) |
| 542 | 541 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑌 ≠ ∅) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) ∈ ℝ) → 𝐺 ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗)))) |
| 543 | 238, 240,
241, 281, 542 | ltletrd 11421 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑌 ≠ ∅) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) ∈ ℝ) → (𝐺 / (1 + 𝐸)) <
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗)))) |
| 544 | 226, 237,
543 | syl2anc 584 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑌 ≠ ∅) ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) = +∞) → (𝐺 / (1 + 𝐸)) <
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗)))) |
| 545 | 225, 544 | pm2.61dan 813 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → (𝐺 / (1 + 𝐸)) <
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗)))) |
| 546 | 196, 197,
198, 199, 218, 545 | sge0uzfsumgt 46459 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → ∃𝑚 ∈ ℕ (𝐺 / (1 + 𝐸)) < Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) |
| 547 | 217 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐺 / (1 + 𝐸)) < Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) → (𝐺 / (1 + 𝐸)) ∈ ℝ) |
| 548 | | fzfid 14014 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (1...𝑚) ∈ Fin) |
| 549 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑚)) → 𝜑) |
| 550 | | elfznn 13593 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (1...𝑚) → 𝑗 ∈ ℕ) |
| 551 | 550 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑚)) → 𝑗 ∈ ℕ) |
| 552 | 28, 114 | sselid 3981 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑃‘𝑗) ∈ ℝ) |
| 553 | 549, 551,
552 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑚)) → (𝑃‘𝑗) ∈ ℝ) |
| 554 | 548, 553 | fsumrecl 15770 |
. . . . . . . . . . . 12
⊢ (𝜑 → Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗) ∈ ℝ) |
| 555 | 554 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐺 / (1 + 𝐸)) < Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) → Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗) ∈ ℝ) |
| 556 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐺 / (1 + 𝐸)) < Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) → (𝐺 / (1 + 𝐸)) < Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) |
| 557 | 547, 555,
556 | ltled 11409 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐺 / (1 + 𝐸)) < Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) → (𝐺 / (1 + 𝐸)) ≤ Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) |
| 558 | 207 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐺 / (1 + 𝐸)) < Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) → 𝐺 ∈ ℝ) |
| 559 | 213 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐺 / (1 + 𝐸)) < Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) → (1 + 𝐸) ∈
ℝ+) |
| 560 | 558, 555,
559 | ledivmuld 13130 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐺 / (1 + 𝐸)) < Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) → ((𝐺 / (1 + 𝐸)) ≤ Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗) ↔ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)))) |
| 561 | 557, 560 | mpbid 232 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐺 / (1 + 𝐸)) < Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) → 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) |
| 562 | 561 | ex 412 |
. . . . . . . 8
⊢ (𝜑 → ((𝐺 / (1 + 𝐸)) < Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗) → 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)))) |
| 563 | 562 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝐺 / (1 + 𝐸)) < Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗) → 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)))) |
| 564 | 563 | adantlr 715 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑌 ≠ ∅) ∧ 𝑚 ∈ ℕ) → ((𝐺 / (1 + 𝐸)) < Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗) → 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)))) |
| 565 | 564 | reximdva 3168 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → (∃𝑚 ∈ ℕ (𝐺 / (1 + 𝐸)) < Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗) → ∃𝑚 ∈ ℕ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)))) |
| 566 | 546, 565 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → ∃𝑚 ∈ ℕ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) |
| 567 | 193, 195,
566 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑌 = ∅) → ∃𝑚 ∈ ℕ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) |
| 568 | 192, 567 | pm2.61dan 813 |
. 2
⊢ (𝜑 → ∃𝑚 ∈ ℕ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) |
| 569 | 43 | 3ad2ant1 1134 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) → 𝑋 ∈ Fin) |
| 570 | 46 | 3ad2ant1 1134 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) → 𝑌 ⊆ 𝑋) |
| 571 | 47 | 3ad2ant1 1134 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) → 𝑍 ∈ (𝑋 ∖ 𝑌)) |
| 572 | 200 | 3ad2ant1 1134 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) → 𝐴:𝑊⟶ℝ) |
| 573 | 203 | 3ad2ant1 1134 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) → 𝐵:𝑊⟶ℝ) |
| 574 | 62 | 3ad2ant1 1134 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) → 𝐶:ℕ⟶(ℝ ↑m
𝑊)) |
| 575 | | eqid 2737 |
. . . . 5
⊢ (𝑦 ∈ 𝑌 ↦ 0) = (𝑦 ∈ 𝑌 ↦ 0) |
| 576 | | eqid 2737 |
. . . . 5
⊢ (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0))) = (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0))) |
| 577 | 95 | 3ad2ant1 1134 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) → 𝐷:ℕ⟶(ℝ ↑m
𝑊)) |
| 578 | | eqid 2737 |
. . . . 5
⊢ (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0))) = (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0))) |
| 579 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (𝐶‘𝑖) = (𝐶‘𝑗)) |
| 580 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (𝐷‘𝑖) = (𝐷‘𝑗)) |
| 581 | 579, 580 | oveq12d 7449 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)) = ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))) |
| 582 | 581 | cbvmptv 5255 |
. . . . . . . 8
⊢ (𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖))) = (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))) |
| 583 | 582 | fveq2i 6909 |
. . . . . . 7
⊢
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) |
| 584 | | hoidmvlelem3.r |
. . . . . . 7
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) |
| 585 | 583, 584 | eqeltrid 2845 |
. . . . . 6
⊢ (𝜑 →
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) |
| 586 | 585 | 3ad2ant1 1134 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) →
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) |
| 587 | | hoidmvlelem3.h |
. . . . . 6
⊢ 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))))) |
| 588 | | eleq1w 2824 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑖 → (𝑗 ∈ 𝑌 ↔ 𝑖 ∈ 𝑌)) |
| 589 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑖 → (𝑐‘𝑗) = (𝑐‘𝑖)) |
| 590 | 589 | breq1d 5153 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑖 → ((𝑐‘𝑗) ≤ 𝑥 ↔ (𝑐‘𝑖) ≤ 𝑥)) |
| 591 | 590, 589 | ifbieq1d 4550 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑖 → if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥) = if((𝑐‘𝑖) ≤ 𝑥, (𝑐‘𝑖), 𝑥)) |
| 592 | 588, 589,
591 | ifbieq12d 4554 |
. . . . . . . . 9
⊢ (𝑗 = 𝑖 → if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥)) = if(𝑖 ∈ 𝑌, (𝑐‘𝑖), if((𝑐‘𝑖) ≤ 𝑥, (𝑐‘𝑖), 𝑥))) |
| 593 | 592 | cbvmptv 5255 |
. . . . . . . 8
⊢ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))) = (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑐‘𝑖), if((𝑐‘𝑖) ≤ 𝑥, (𝑐‘𝑖), 𝑥))) |
| 594 | 593 | mpteq2i 5247 |
. . . . . . 7
⊢ (𝑐 ∈ (ℝ
↑m 𝑊)
↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥)))) = (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑐‘𝑖), if((𝑐‘𝑖) ≤ 𝑥, (𝑐‘𝑖), 𝑥)))) |
| 595 | 594 | mpteq2i 5247 |
. . . . . 6
⊢ (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ
↑m 𝑊)
↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))))) = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑐‘𝑖), if((𝑐‘𝑖) ≤ 𝑥, (𝑐‘𝑖), 𝑥))))) |
| 596 | 587, 595 | eqtri 2765 |
. . . . 5
⊢ 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑐‘𝑖), if((𝑐‘𝑖) ≤ 𝑥, (𝑐‘𝑖), 𝑥))))) |
| 597 | 172 | 3ad2ant1 1134 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) → 𝐸 ∈
ℝ+) |
| 598 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑖 → (𝐶‘𝑗) = (𝐶‘𝑖)) |
| 599 | | fveq2 6906 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑖 → (𝐷‘𝑗) = (𝐷‘𝑖)) |
| 600 | 599 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑖 → ((𝐻‘𝑧)‘(𝐷‘𝑗)) = ((𝐻‘𝑧)‘(𝐷‘𝑖))) |
| 601 | 598, 600 | oveq12d 7449 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑖 → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))) = ((𝐶‘𝑖)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑖)))) |
| 602 | 601 | cbvmptv 5255 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))) = (𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑖)))) |
| 603 | 602 | fveq2i 6909 |
. . . . . . . . 9
⊢
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))) =
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑖))))) |
| 604 | 603 | oveq2i 7442 |
. . . . . . . 8
⊢ ((1 +
𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))))) = ((1 + 𝐸) ·
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑖)))))) |
| 605 | 604 | breq2i 5151 |
. . . . . . 7
⊢ ((𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))))) ↔ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑖))))))) |
| 606 | 605 | rabbii 3442 |
. . . . . 6
⊢ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} = {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑖))))))} |
| 607 | 337, 606 | eqtri 2765 |
. . . . 5
⊢ 𝑈 = {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑖))))))} |
| 608 | 285 | 3ad2ant1 1134 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) → 𝑆 ∈ 𝑈) |
| 609 | 344 | 3ad2ant1 1134 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) → 𝑆 < (𝐵‘𝑍)) |
| 610 | | eqid 2737 |
. . . . 5
⊢ (𝑖 ∈ ℕ ↦ (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖))) = (𝑖 ∈ ℕ ↦ (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖))) |
| 611 | | simp2 1138 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) → 𝑚 ∈ ℕ) |
| 612 | | id 22 |
. . . . . . . 8
⊢ (𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) → 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) |
| 613 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑖 → (𝑃‘𝑗) = (𝑃‘𝑖)) |
| 614 | 613 | cbvsumv 15732 |
. . . . . . . . . 10
⊢
Σ𝑗 ∈
(1...𝑚)(𝑃‘𝑗) = Σ𝑖 ∈ (1...𝑚)(𝑃‘𝑖) |
| 615 | 614 | oveq2i 7442 |
. . . . . . . . 9
⊢ ((1 +
𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) = ((1 + 𝐸) · Σ𝑖 ∈ (1...𝑚)(𝑃‘𝑖)) |
| 616 | 615 | a1i 11 |
. . . . . . . 8
⊢ (𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) → ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) = ((1 + 𝐸) · Σ𝑖 ∈ (1...𝑚)(𝑃‘𝑖))) |
| 617 | 612, 616 | breqtrd 5169 |
. . . . . . 7
⊢ (𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) → 𝐺 ≤ ((1 + 𝐸) · Σ𝑖 ∈ (1...𝑚)(𝑃‘𝑖))) |
| 618 | 617 | 3ad2ant3 1136 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) → 𝐺 ≤ ((1 + 𝐸) · Σ𝑖 ∈ (1...𝑚)(𝑃‘𝑖))) |
| 619 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑚)) → 𝜑) |
| 620 | | elfznn 13593 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (1...𝑚) → 𝑖 ∈ ℕ) |
| 621 | 620 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑚)) → 𝑖 ∈ ℕ) |
| 622 | | eleq1w 2824 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑖 → (𝑗 ∈ ℕ ↔ 𝑖 ∈ ℕ)) |
| 623 | | fveq2 6906 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑖 → (𝐽‘𝑗) = (𝐽‘𝑖)) |
| 624 | | fveq2 6906 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑖 → (𝐾‘𝑗) = (𝐾‘𝑖)) |
| 625 | 623, 624 | oveq12d 7449 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑖 → ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)) = ((𝐽‘𝑖)(𝐿‘𝑌)(𝐾‘𝑖))) |
| 626 | 613, 625 | eqeq12d 2753 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑖 → ((𝑃‘𝑗) = ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)) ↔ (𝑃‘𝑖) = ((𝐽‘𝑖)(𝐿‘𝑌)(𝐾‘𝑖)))) |
| 627 | 622, 626 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑖 → ((𝑗 ∈ ℕ → (𝑃‘𝑗) = ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗))) ↔ (𝑖 ∈ ℕ → (𝑃‘𝑖) = ((𝐽‘𝑖)(𝐿‘𝑌)(𝐾‘𝑖))))) |
| 628 | 627, 41 | chvarvv 1998 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ ℕ → (𝑃‘𝑖) = ((𝐽‘𝑖)(𝐿‘𝑌)(𝐾‘𝑖))) |
| 629 | 628 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝑃‘𝑖) = ((𝐽‘𝑖)(𝐿‘𝑌)(𝐾‘𝑖))) |
| 630 | 622 | anbi2d 630 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑖 → ((𝜑 ∧ 𝑗 ∈ ℕ) ↔ (𝜑 ∧ 𝑖 ∈ ℕ))) |
| 631 | 598 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝑖 → ((𝐶‘𝑗)‘𝑍) = ((𝐶‘𝑖)‘𝑍)) |
| 632 | 599 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝑖 → ((𝐷‘𝑗)‘𝑍) = ((𝐷‘𝑖)‘𝑍)) |
| 633 | 631, 632 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝑖 → (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) = (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))) |
| 634 | 633 | eleq2d 2827 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑖 → (𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) ↔ 𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)))) |
| 635 | 598 | reseq1d 5996 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑖 → ((𝐶‘𝑗) ↾ 𝑌) = ((𝐶‘𝑖) ↾ 𝑌)) |
| 636 | 634, 635 | ifbieq1d 4550 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑖 → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), 𝐹)) |
| 637 | 623, 636 | eqeq12d 2753 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑖 → ((𝐽‘𝑗) = if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) ↔ (𝐽‘𝑖) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), 𝐹))) |
| 638 | 630, 637 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑖 → (((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐽‘𝑗) = if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹)) ↔ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐽‘𝑖) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), 𝐹)))) |
| 639 | 638, 149 | chvarvv 1998 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐽‘𝑖) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), 𝐹)) |
| 640 | 599 | reseq1d 5996 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑖 → ((𝐷‘𝑗) ↾ 𝑌) = ((𝐷‘𝑖) ↾ 𝑌)) |
| 641 | 634, 640 | ifbieq1d 4550 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑖 → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), 𝐹)) |
| 642 | 624, 641 | eqeq12d 2753 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑖 → ((𝐾‘𝑗) = if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹) ↔ (𝐾‘𝑖) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), 𝐹))) |
| 643 | 630, 642 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑖 → (((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐾‘𝑗) = if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹)) ↔ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐾‘𝑖) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), 𝐹)))) |
| 644 | 643, 440 | chvarvv 1998 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐾‘𝑖) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), 𝐹)) |
| 645 | 639, 644 | oveq12d 7449 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝐽‘𝑖)(𝐿‘𝑌)(𝐾‘𝑖)) = (if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), 𝐹)(𝐿‘𝑌)if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), 𝐹))) |
| 646 | 629, 645 | eqtrd 2777 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝑃‘𝑖) = (if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), 𝐹)(𝐿‘𝑌)if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), 𝐹))) |
| 647 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ) |
| 648 | | ovexd 7466 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)) ∈ V) |
| 649 | 610 | fvmpt2 7027 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ ℕ ∧ (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)) ∈ V) → ((𝑖 ∈ ℕ ↦ (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)))‘𝑖) = (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖))) |
| 650 | 647, 648,
649 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)))‘𝑖) = (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖))) |
| 651 | | fvex 6919 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐶‘𝑖) ∈ V |
| 652 | 651 | resex 6047 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐶‘𝑖) ↾ 𝑌) ∈ V |
| 653 | 652 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝐶‘𝑖) ↾ 𝑌) ∈ V) |
| 654 | 80, 143 | eqeltrrid 2846 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ 0) ∈ V) |
| 655 | 653, 654 | ifcld 4572 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)) ∈ V) |
| 656 | 655 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)) ∈ V) |
| 657 | 576 | fvmpt2 7027 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ ℕ ∧ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)) ∈ V) → ((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0))) |
| 658 | 647, 656,
657 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0))) |
| 659 | 80 | eqcomi 2746 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ 𝑌 ↦ 0) = 𝐹 |
| 660 | | ifeq2 4530 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ 𝑌 ↦ 0) = 𝐹 → if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), 𝐹)) |
| 661 | 659, 660 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), 𝐹) |
| 662 | 661 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), 𝐹)) |
| 663 | 658, 662 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), 𝐹)) |
| 664 | | fvex 6919 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐷‘𝑖) ∈ V |
| 665 | 664 | resex 6047 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐷‘𝑖) ↾ 𝑌) ∈ V |
| 666 | 665 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝐷‘𝑖) ↾ 𝑌) ∈ V) |
| 667 | 666, 654 | ifcld 4572 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)) ∈ V) |
| 668 | 667 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)) ∈ V) |
| 669 | 578 | fvmpt2 7027 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ ℕ ∧ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)) ∈ V) → ((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0))) |
| 670 | 647, 668,
669 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0))) |
| 671 | | biid 261 |
. . . . . . . . . . . . . . . 16
⊢ (𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)) ↔ 𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))) |
| 672 | 671, 659 | ifbieq2i 4551 |
. . . . . . . . . . . . . . 15
⊢ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), 𝐹) |
| 673 | 672 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), 𝐹)) |
| 674 | 670, 673 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), 𝐹)) |
| 675 | 663, 674 | oveq12d 7449 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)) = (if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), 𝐹)(𝐿‘𝑌)if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), 𝐹))) |
| 676 | 650, 675 | eqtrd 2777 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)))‘𝑖) = (if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), 𝐹)(𝐿‘𝑌)if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), 𝐹))) |
| 677 | 646, 676 | eqtr4d 2780 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝑃‘𝑖) = ((𝑖 ∈ ℕ ↦ (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)))‘𝑖)) |
| 678 | 619, 621,
677 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑚)) → (𝑃‘𝑖) = ((𝑖 ∈ ℕ ↦ (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)))‘𝑖)) |
| 679 | 678 | 3ad2antl1 1186 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) ∧ 𝑖 ∈ (1...𝑚)) → (𝑃‘𝑖) = ((𝑖 ∈ ℕ ↦ (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)))‘𝑖)) |
| 680 | 679 | sumeq2dv 15738 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) → Σ𝑖 ∈ (1...𝑚)(𝑃‘𝑖) = Σ𝑖 ∈ (1...𝑚)((𝑖 ∈ ℕ ↦ (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)))‘𝑖)) |
| 681 | 680 | oveq2d 7447 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) → ((1 + 𝐸) · Σ𝑖 ∈ (1...𝑚)(𝑃‘𝑖)) = ((1 + 𝐸) · Σ𝑖 ∈ (1...𝑚)((𝑖 ∈ ℕ ↦ (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)))‘𝑖))) |
| 682 | 618, 681 | breqtrd 5169 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) → 𝐺 ≤ ((1 + 𝐸) · Σ𝑖 ∈ (1...𝑚)((𝑖 ∈ ℕ ↦ (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)))‘𝑖))) |
| 683 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑗 = ℎ → (𝐷‘𝑗) = (𝐷‘ℎ)) |
| 684 | 683 | fveq1d 6908 |
. . . . . . 7
⊢ (𝑗 = ℎ → ((𝐷‘𝑗)‘𝑍) = ((𝐷‘ℎ)‘𝑍)) |
| 685 | 684 | cbvmptv 5255 |
. . . . . 6
⊢ (𝑗 ∈ {𝑖 ∈ (1...𝑚) ∣ 𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))} ↦ ((𝐷‘𝑗)‘𝑍)) = (ℎ ∈ {𝑖 ∈ (1...𝑚) ∣ 𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))} ↦ ((𝐷‘ℎ)‘𝑍)) |
| 686 | 685 | rneqi 5948 |
. . . . 5
⊢ ran
(𝑗 ∈ {𝑖 ∈ (1...𝑚) ∣ 𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))} ↦ ((𝐷‘𝑗)‘𝑍)) = ran (ℎ ∈ {𝑖 ∈ (1...𝑚) ∣ 𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))} ↦ ((𝐷‘ℎ)‘𝑍)) |
| 687 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (ℎ = 𝑖 → (𝐶‘ℎ) = (𝐶‘𝑖)) |
| 688 | 687 | fveq1d 6908 |
. . . . . . . . . . 11
⊢ (ℎ = 𝑖 → ((𝐶‘ℎ)‘𝑍) = ((𝐶‘𝑖)‘𝑍)) |
| 689 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (ℎ = 𝑖 → (𝐷‘ℎ) = (𝐷‘𝑖)) |
| 690 | 689 | fveq1d 6908 |
. . . . . . . . . . 11
⊢ (ℎ = 𝑖 → ((𝐷‘ℎ)‘𝑍) = ((𝐷‘𝑖)‘𝑍)) |
| 691 | 688, 690 | oveq12d 7449 |
. . . . . . . . . 10
⊢ (ℎ = 𝑖 → (((𝐶‘ℎ)‘𝑍)[,)((𝐷‘ℎ)‘𝑍)) = (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))) |
| 692 | 691 | eleq2d 2827 |
. . . . . . . . 9
⊢ (ℎ = 𝑖 → (𝑆 ∈ (((𝐶‘ℎ)‘𝑍)[,)((𝐷‘ℎ)‘𝑍)) ↔ 𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)))) |
| 693 | 692 | cbvrabv 3447 |
. . . . . . . 8
⊢ {ℎ ∈ (1...𝑚) ∣ 𝑆 ∈ (((𝐶‘ℎ)‘𝑍)[,)((𝐷‘ℎ)‘𝑍))} = {𝑖 ∈ (1...𝑚) ∣ 𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))} |
| 694 | 693 | mpteq1i 5238 |
. . . . . . 7
⊢ (𝑗 ∈ {ℎ ∈ (1...𝑚) ∣ 𝑆 ∈ (((𝐶‘ℎ)‘𝑍)[,)((𝐷‘ℎ)‘𝑍))} ↦ ((𝐷‘𝑗)‘𝑍)) = (𝑗 ∈ {𝑖 ∈ (1...𝑚) ∣ 𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))} ↦ ((𝐷‘𝑗)‘𝑍)) |
| 695 | 694 | rneqi 5948 |
. . . . . 6
⊢ ran
(𝑗 ∈ {ℎ ∈ (1...𝑚) ∣ 𝑆 ∈ (((𝐶‘ℎ)‘𝑍)[,)((𝐷‘ℎ)‘𝑍))} ↦ ((𝐷‘𝑗)‘𝑍)) = ran (𝑗 ∈ {𝑖 ∈ (1...𝑚) ∣ 𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))} ↦ ((𝐷‘𝑗)‘𝑍)) |
| 696 | 695 | uneq2i 4165 |
. . . . 5
⊢ ({(𝐵‘𝑍)} ∪ ran (𝑗 ∈ {ℎ ∈ (1...𝑚) ∣ 𝑆 ∈ (((𝐶‘ℎ)‘𝑍)[,)((𝐷‘ℎ)‘𝑍))} ↦ ((𝐷‘𝑗)‘𝑍))) = ({(𝐵‘𝑍)} ∪ ran (𝑗 ∈ {𝑖 ∈ (1...𝑚) ∣ 𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))} ↦ ((𝐷‘𝑗)‘𝑍))) |
| 697 | | eqid 2737 |
. . . . 5
⊢
inf(({(𝐵‘𝑍)} ∪ ran (𝑗 ∈ {ℎ ∈ (1...𝑚) ∣ 𝑆 ∈ (((𝐶‘ℎ)‘𝑍)[,)((𝐷‘ℎ)‘𝑍))} ↦ ((𝐷‘𝑗)‘𝑍))), ℝ, < ) = inf(({(𝐵‘𝑍)} ∪ ran (𝑗 ∈ {ℎ ∈ (1...𝑚) ∣ 𝑆 ∈ (((𝐶‘ℎ)‘𝑍)[,)((𝐷‘ℎ)‘𝑍))} ↦ ((𝐷‘𝑗)‘𝑍))), ℝ, < ) |
| 698 | 18, 569, 570, 571, 44, 572, 573, 574, 575, 576, 577, 578, 586, 596, 5, 597, 607, 608, 609, 610, 611, 682, 686, 696, 697 | hoidmvlelem2 46611 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) → ∃𝑢 ∈ 𝑈 𝑆 < 𝑢) |
| 699 | 698 | 3exp 1120 |
. . 3
⊢ (𝜑 → (𝑚 ∈ ℕ → (𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) → ∃𝑢 ∈ 𝑈 𝑆 < 𝑢))) |
| 700 | 699 | rexlimdv 3153 |
. 2
⊢ (𝜑 → (∃𝑚 ∈ ℕ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) → ∃𝑢 ∈ 𝑈 𝑆 < 𝑢)) |
| 701 | 568, 700 | mpd 15 |
1
⊢ (𝜑 → ∃𝑢 ∈ 𝑈 𝑆 < 𝑢) |