Step | Hyp | Ref
| Expression |
1 | | 1nn 11984 |
. . . . 5
⊢ 1 ∈
ℕ |
2 | 1 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 = ∅) → 1 ∈
ℕ) |
3 | | 0le0 12074 |
. . . . . 6
⊢ 0 ≤
0 |
4 | 3 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 = ∅) → 0 ≤
0) |
5 | | hoidmvlelem3.g |
. . . . . . . 8
⊢ 𝐺 = ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) |
6 | 5 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌 = ∅) → 𝐺 = ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌))) |
7 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑌 = ∅ → (𝐿‘𝑌) = (𝐿‘∅)) |
8 | | reseq2 5886 |
. . . . . . . . . 10
⊢ (𝑌 = ∅ → (𝐴 ↾ 𝑌) = (𝐴 ↾ ∅)) |
9 | | res0 5895 |
. . . . . . . . . . 11
⊢ (𝐴 ↾ ∅) =
∅ |
10 | 9 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑌 = ∅ → (𝐴 ↾ ∅) =
∅) |
11 | 8, 10 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝑌 = ∅ → (𝐴 ↾ 𝑌) = ∅) |
12 | | reseq2 5886 |
. . . . . . . . . 10
⊢ (𝑌 = ∅ → (𝐵 ↾ 𝑌) = (𝐵 ↾ ∅)) |
13 | | res0 5895 |
. . . . . . . . . . 11
⊢ (𝐵 ↾ ∅) =
∅ |
14 | 13 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑌 = ∅ → (𝐵 ↾ ∅) =
∅) |
15 | 12, 14 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝑌 = ∅ → (𝐵 ↾ 𝑌) = ∅) |
16 | 7, 11, 15 | oveq123d 7296 |
. . . . . . . 8
⊢ (𝑌 = ∅ → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) = (∅(𝐿‘∅)∅)) |
17 | 16 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌 = ∅) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) = (∅(𝐿‘∅)∅)) |
18 | | hoidmvlelem3.l |
. . . . . . . 8
⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
19 | | f0 6655 |
. . . . . . . . 9
⊢
∅:∅⟶ℝ |
20 | 19 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑌 = ∅) →
∅:∅⟶ℝ) |
21 | 18, 20, 20 | hoidmv0val 44121 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌 = ∅) → (∅(𝐿‘∅)∅) =
0) |
22 | 6, 17, 21 | 3eqtrd 2782 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑌 = ∅) → 𝐺 = 0) |
23 | | nfcvd 2908 |
. . . . . . . . . . 11
⊢ (𝜑 → Ⅎ𝑗(𝑃‘1)) |
24 | | nfv 1917 |
. . . . . . . . . . 11
⊢
Ⅎ𝑗𝜑 |
25 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 = 1) → 𝑗 = 1) |
26 | 25 | fveq2d 6778 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 = 1) → (𝑃‘𝑗) = (𝑃‘1)) |
27 | | 1red 10976 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ∈
ℝ) |
28 | | rge0ssre 13188 |
. . . . . . . . . . . . 13
⊢
(0[,)+∞) ⊆ ℝ |
29 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝜑) |
30 | 1 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 1 ∈
ℕ) |
31 | 1 | elexi 3451 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
V |
32 | | eleq1 2826 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 1 → (𝑗 ∈ ℕ ↔ 1 ∈
ℕ)) |
33 | 32 | anbi2d 629 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 1 → ((𝜑 ∧ 𝑗 ∈ ℕ) ↔ (𝜑 ∧ 1 ∈ ℕ))) |
34 | | fveq2 6774 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 1 → (𝑃‘𝑗) = (𝑃‘1)) |
35 | 34 | eleq1d 2823 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 1 → ((𝑃‘𝑗) ∈ (0[,)+∞) ↔ (𝑃‘1) ∈
(0[,)+∞))) |
36 | 33, 35 | imbi12d 345 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 1 → (((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑃‘𝑗) ∈ (0[,)+∞)) ↔ ((𝜑 ∧ 1 ∈ ℕ) →
(𝑃‘1) ∈
(0[,)+∞)))) |
37 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℕ) |
38 | | ovexd 7310 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ ℕ → ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)) ∈ V) |
39 | | hoidmvlelem3.p |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑃 = (𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗))) |
40 | 39 | fvmpt2 6886 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 ∈ ℕ ∧ ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)) ∈ V) → (𝑃‘𝑗) = ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗))) |
41 | 37, 38, 40 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ ℕ → (𝑃‘𝑗) = ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗))) |
42 | 41 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑃‘𝑗) = ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗))) |
43 | | hoidmvlelem3.x |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑋 ∈ Fin) |
44 | | hoidmvlelem3.w |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑊 = (𝑌 ∪ {𝑍}) |
45 | 44 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑊 = (𝑌 ∪ {𝑍})) |
46 | | hoidmvlelem3.y |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
47 | | hoidmvlelem3.z |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝑍 ∈ (𝑋 ∖ 𝑌)) |
48 | 47 | eldifad 3899 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑍 ∈ 𝑋) |
49 | | snssi 4741 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑍 ∈ 𝑋 → {𝑍} ⊆ 𝑋) |
50 | 48, 49 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → {𝑍} ⊆ 𝑋) |
51 | 46, 50 | unssd 4120 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑌 ∪ {𝑍}) ⊆ 𝑋) |
52 | 45, 51 | eqsstrd 3959 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑊 ⊆ 𝑋) |
53 | 43, 52 | ssfid 9042 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑊 ∈ Fin) |
54 | | ssun1 4106 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑌 ⊆ (𝑌 ∪ {𝑍}) |
55 | 44 | eqcomi 2747 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑌 ∪ {𝑍}) = 𝑊 |
56 | 54, 55 | sseqtri 3957 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑌 ⊆ 𝑊 |
57 | 56 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑌 ⊆ 𝑊) |
58 | 53, 57 | ssfid 9042 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑌 ∈ Fin) |
59 | 58 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑌 ∈ Fin) |
60 | | iftrue 4465 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) = ((𝐶‘𝑗) ↾ 𝑌)) |
61 | 60 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) = ((𝐶‘𝑗) ↾ 𝑌)) |
62 | | hoidmvlelem3.c |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝐶:ℕ⟶(ℝ ↑m
𝑊)) |
63 | 62 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗) ∈ (ℝ ↑m 𝑊)) |
64 | | elmapi 8637 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐶‘𝑗) ∈ (ℝ ↑m 𝑊) → (𝐶‘𝑗):𝑊⟶ℝ) |
65 | 63, 64 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗):𝑊⟶ℝ) |
66 | 54, 44 | sseqtrri 3958 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 𝑌 ⊆ 𝑊 |
67 | 66 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑌 ⊆ 𝑊) |
68 | 65, 67 | fssresd 6641 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗) ↾ 𝑌):𝑌⟶ℝ) |
69 | | reex 10962 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ℝ
∈ V |
70 | 69 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ℝ ∈
V) |
71 | 53, 57 | ssexd 5248 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝑌 ∈ V) |
72 | 71 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑌 ∈ V) |
73 | 70, 72 | elmapd 8629 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((𝐶‘𝑗) ↾ 𝑌) ∈ (ℝ ↑m 𝑌) ↔ ((𝐶‘𝑗) ↾ 𝑌):𝑌⟶ℝ)) |
74 | 68, 73 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗) ↾ 𝑌) ∈ (ℝ ↑m 𝑌)) |
75 | 74 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → ((𝐶‘𝑗) ↾ 𝑌) ∈ (ℝ ↑m 𝑌)) |
76 | 61, 75 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) ∈ (ℝ ↑m 𝑌)) |
77 | | iffalse 4468 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬
𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) = 𝐹) |
78 | 77 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) = 𝐹) |
79 | | 0red 10978 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 0 ∈ ℝ) |
80 | | hoidmvlelem3.f |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝐹 = (𝑦 ∈ 𝑌 ↦ 0) |
81 | 79, 80 | fmptd 6988 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐹:𝑌⟶ℝ) |
82 | 69 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → ℝ ∈
V) |
83 | 82, 58 | elmapd 8629 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝐹 ∈ (ℝ ↑m 𝑌) ↔ 𝐹:𝑌⟶ℝ)) |
84 | 81, 83 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐹 ∈ (ℝ ↑m 𝑌)) |
85 | 84 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → 𝐹 ∈ (ℝ ↑m 𝑌)) |
86 | 78, 85 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) ∈ (ℝ ↑m 𝑌)) |
87 | 76, 86 | pm2.61dan 810 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) ∈ (ℝ ↑m 𝑌)) |
88 | | hoidmvlelem3.j |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐽 = (𝑗 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹)) |
89 | 87, 88 | fmptd 6988 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐽:ℕ⟶(ℝ ↑m
𝑌)) |
90 | 89 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐽‘𝑗) ∈ (ℝ ↑m 𝑌)) |
91 | | elmapi 8637 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐽‘𝑗) ∈ (ℝ ↑m 𝑌) → (𝐽‘𝑗):𝑌⟶ℝ) |
92 | 90, 91 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐽‘𝑗):𝑌⟶ℝ) |
93 | | iftrue 4465 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹) = ((𝐷‘𝑗) ↾ 𝑌)) |
94 | 93 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹) = ((𝐷‘𝑗) ↾ 𝑌)) |
95 | | hoidmvlelem3.d |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝐷:ℕ⟶(ℝ ↑m
𝑊)) |
96 | 95 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗) ∈ (ℝ ↑m 𝑊)) |
97 | | elmapi 8637 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐷‘𝑗) ∈ (ℝ ↑m 𝑊) → (𝐷‘𝑗):𝑊⟶ℝ) |
98 | 96, 97 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗):𝑊⟶ℝ) |
99 | 98, 67 | fssresd 6641 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐷‘𝑗) ↾ 𝑌):𝑌⟶ℝ) |
100 | 70, 72 | elmapd 8629 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((𝐷‘𝑗) ↾ 𝑌) ∈ (ℝ ↑m 𝑌) ↔ ((𝐷‘𝑗) ↾ 𝑌):𝑌⟶ℝ)) |
101 | 99, 100 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐷‘𝑗) ↾ 𝑌) ∈ (ℝ ↑m 𝑌)) |
102 | 101 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → ((𝐷‘𝑗) ↾ 𝑌) ∈ (ℝ ↑m 𝑌)) |
103 | 94, 102 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹) ∈ (ℝ ↑m 𝑌)) |
104 | | iffalse 4468 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬
𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹) = 𝐹) |
105 | 104 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹) = 𝐹) |
106 | 105, 85 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹) ∈ (ℝ ↑m 𝑌)) |
107 | 103, 106 | pm2.61dan 810 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹) ∈ (ℝ ↑m 𝑌)) |
108 | | hoidmvlelem3.k |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐾 = (𝑗 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹)) |
109 | 107, 108 | fmptd 6988 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐾:ℕ⟶(ℝ ↑m
𝑌)) |
110 | 109 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐾‘𝑗) ∈ (ℝ ↑m 𝑌)) |
111 | | elmapi 8637 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐾‘𝑗) ∈ (ℝ ↑m 𝑌) → (𝐾‘𝑗):𝑌⟶ℝ) |
112 | 110, 111 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐾‘𝑗):𝑌⟶ℝ) |
113 | 18, 59, 92, 112 | hoidmvcl 44120 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)) ∈ (0[,)+∞)) |
114 | 42, 113 | eqeltrd 2839 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑃‘𝑗) ∈ (0[,)+∞)) |
115 | 31, 36, 114 | vtocl 3498 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 1 ∈ ℕ) →
(𝑃‘1) ∈
(0[,)+∞)) |
116 | 29, 30, 115 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑃‘1) ∈
(0[,)+∞)) |
117 | 28, 116 | sselid 3919 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑃‘1) ∈ ℝ) |
118 | 117 | recnd 11003 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑃‘1) ∈ ℂ) |
119 | 23, 24, 26, 27, 118 | sumsnd 42569 |
. . . . . . . . . 10
⊢ (𝜑 → Σ𝑗 ∈ {1} (𝑃‘𝑗) = (𝑃‘1)) |
120 | 119 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑌 = ∅) → Σ𝑗 ∈ {1} (𝑃‘𝑗) = (𝑃‘1)) |
121 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 1 → (𝐽‘𝑗) = (𝐽‘1)) |
122 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 1 → (𝐾‘𝑗) = (𝐾‘1)) |
123 | 121, 122 | oveq12d 7293 |
. . . . . . . . . . . 12
⊢ (𝑗 = 1 → ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)) = ((𝐽‘1)(𝐿‘𝑌)(𝐾‘1))) |
124 | | ovex 7308 |
. . . . . . . . . . . 12
⊢ ((𝐽‘1)(𝐿‘𝑌)(𝐾‘1)) ∈ V |
125 | 123, 39, 124 | fvmpt 6875 |
. . . . . . . . . . 11
⊢ (1 ∈
ℕ → (𝑃‘1)
= ((𝐽‘1)(𝐿‘𝑌)(𝐾‘1))) |
126 | 1, 125 | ax-mp 5 |
. . . . . . . . . 10
⊢ (𝑃‘1) = ((𝐽‘1)(𝐿‘𝑌)(𝐾‘1)) |
127 | 126 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑌 = ∅) → (𝑃‘1) = ((𝐽‘1)(𝐿‘𝑌)(𝐾‘1))) |
128 | 7 | oveqd 7292 |
. . . . . . . . . . 11
⊢ (𝑌 = ∅ → ((𝐽‘1)(𝐿‘𝑌)(𝐾‘1)) = ((𝐽‘1)(𝐿‘∅)(𝐾‘1))) |
129 | 128 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑌 = ∅) → ((𝐽‘1)(𝐿‘𝑌)(𝐾‘1)) = ((𝐽‘1)(𝐿‘∅)(𝐾‘1))) |
130 | 121 | feq1d 6585 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 1 → ((𝐽‘𝑗):𝑌⟶ℝ ↔ (𝐽‘1):𝑌⟶ℝ)) |
131 | 33, 130 | imbi12d 345 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 1 → (((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐽‘𝑗):𝑌⟶ℝ) ↔ ((𝜑 ∧ 1 ∈ ℕ) → (𝐽‘1):𝑌⟶ℝ))) |
132 | 68 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → ((𝐶‘𝑗) ↾ 𝑌):𝑌⟶ℝ) |
133 | 61 | feq1d 6585 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → (if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹):𝑌⟶ℝ ↔ ((𝐶‘𝑗) ↾ 𝑌):𝑌⟶ℝ)) |
134 | 132, 133 | mpbird 256 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹):𝑌⟶ℝ) |
135 | 81 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → 𝐹:𝑌⟶ℝ) |
136 | 78 | feq1d 6585 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → (if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹):𝑌⟶ℝ ↔ 𝐹:𝑌⟶ℝ)) |
137 | 135, 136 | mpbird 256 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹):𝑌⟶ℝ) |
138 | 134, 137 | pm2.61dan 810 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹):𝑌⟶ℝ) |
139 | | simpr 485 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ) |
140 | | fvex 6787 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐶‘𝑗) ∈ V |
141 | 140 | resex 5939 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐶‘𝑗) ↾ 𝑌) ∈ V |
142 | 61, 141 | eqeltrdi 2847 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) ∈ V) |
143 | 84 | elexd 3452 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐹 ∈ V) |
144 | 143 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝐹 ∈ V) |
145 | 144 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → 𝐹 ∈ V) |
146 | 78, 145 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) ∈ V) |
147 | 142, 146 | pm2.61dan 810 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) ∈ V) |
148 | 88 | fvmpt2 6886 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 ∈ ℕ ∧ if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) ∈ V) → (𝐽‘𝑗) = if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹)) |
149 | 139, 147,
148 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐽‘𝑗) = if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹)) |
150 | 149 | feq1d 6585 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐽‘𝑗):𝑌⟶ℝ ↔ if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹):𝑌⟶ℝ)) |
151 | 138, 150 | mpbird 256 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐽‘𝑗):𝑌⟶ℝ) |
152 | 31, 131, 151 | vtocl 3498 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 1 ∈ ℕ) →
(𝐽‘1):𝑌⟶ℝ) |
153 | 29, 30, 152 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐽‘1):𝑌⟶ℝ) |
154 | 153 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑌 = ∅) → (𝐽‘1):𝑌⟶ℝ) |
155 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑌 = ∅ → 𝑌 = ∅) |
156 | 155 | eqcomd 2744 |
. . . . . . . . . . . . . 14
⊢ (𝑌 = ∅ → ∅ =
𝑌) |
157 | 156 | feq2d 6586 |
. . . . . . . . . . . . 13
⊢ (𝑌 = ∅ → ((𝐽‘1):∅⟶ℝ
↔ (𝐽‘1):𝑌⟶ℝ)) |
158 | 157 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑌 = ∅) → ((𝐽‘1):∅⟶ℝ ↔
(𝐽‘1):𝑌⟶ℝ)) |
159 | 154, 158 | mpbird 256 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑌 = ∅) → (𝐽‘1):∅⟶ℝ) |
160 | 122 | feq1d 6585 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 1 → ((𝐾‘𝑗):𝑌⟶ℝ ↔ (𝐾‘1):𝑌⟶ℝ)) |
161 | 33, 160 | imbi12d 345 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 1 → (((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐾‘𝑗):𝑌⟶ℝ) ↔ ((𝜑 ∧ 1 ∈ ℕ) → (𝐾‘1):𝑌⟶ℝ))) |
162 | 31, 161, 112 | vtocl 3498 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 1 ∈ ℕ) →
(𝐾‘1):𝑌⟶ℝ) |
163 | 29, 30, 162 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐾‘1):𝑌⟶ℝ) |
164 | 163 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑌 = ∅) → (𝐾‘1):𝑌⟶ℝ) |
165 | 156 | feq2d 6586 |
. . . . . . . . . . . . 13
⊢ (𝑌 = ∅ → ((𝐾‘1):∅⟶ℝ
↔ (𝐾‘1):𝑌⟶ℝ)) |
166 | 165 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑌 = ∅) → ((𝐾‘1):∅⟶ℝ ↔
(𝐾‘1):𝑌⟶ℝ)) |
167 | 164, 166 | mpbird 256 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑌 = ∅) → (𝐾‘1):∅⟶ℝ) |
168 | 18, 159, 167 | hoidmv0val 44121 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑌 = ∅) → ((𝐽‘1)(𝐿‘∅)(𝐾‘1)) = 0) |
169 | 129, 168 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑌 = ∅) → ((𝐽‘1)(𝐿‘𝑌)(𝐾‘1)) = 0) |
170 | 120, 127,
169 | 3eqtrd 2782 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑌 = ∅) → Σ𝑗 ∈ {1} (𝑃‘𝑗) = 0) |
171 | 170 | oveq2d 7291 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌 = ∅) → ((1 + 𝐸) · Σ𝑗 ∈ {1} (𝑃‘𝑗)) = ((1 + 𝐸) · 0)) |
172 | | hoidmvlelem3.e |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
173 | 172 | rpred 12772 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∈ ℝ) |
174 | 27, 173 | readdcld 11004 |
. . . . . . . . . 10
⊢ (𝜑 → (1 + 𝐸) ∈ ℝ) |
175 | 174 | recnd 11003 |
. . . . . . . . 9
⊢ (𝜑 → (1 + 𝐸) ∈ ℂ) |
176 | 175 | mul01d 11174 |
. . . . . . . 8
⊢ (𝜑 → ((1 + 𝐸) · 0) = 0) |
177 | 176 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌 = ∅) → ((1 + 𝐸) · 0) = 0) |
178 | | eqidd 2739 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌 = ∅) → 0 = 0) |
179 | 171, 177,
178 | 3eqtrd 2782 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑌 = ∅) → ((1 + 𝐸) · Σ𝑗 ∈ {1} (𝑃‘𝑗)) = 0) |
180 | 22, 179 | breq12d 5087 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 = ∅) → (𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ {1} (𝑃‘𝑗)) ↔ 0 ≤ 0)) |
181 | 4, 180 | mpbird 256 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 = ∅) → 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ {1} (𝑃‘𝑗))) |
182 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑚 = 1 → (1...𝑚) = (1...1)) |
183 | 1 | nnzi 12344 |
. . . . . . . . . . 11
⊢ 1 ∈
ℤ |
184 | | fzsn 13298 |
. . . . . . . . . . 11
⊢ (1 ∈
ℤ → (1...1) = {1}) |
185 | 183, 184 | ax-mp 5 |
. . . . . . . . . 10
⊢ (1...1) =
{1} |
186 | 185 | a1i 11 |
. . . . . . . . 9
⊢ (𝑚 = 1 → (1...1) =
{1}) |
187 | 182, 186 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝑚 = 1 → (1...𝑚) = {1}) |
188 | 187 | sumeq1d 15413 |
. . . . . . 7
⊢ (𝑚 = 1 → Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗) = Σ𝑗 ∈ {1} (𝑃‘𝑗)) |
189 | 188 | oveq2d 7291 |
. . . . . 6
⊢ (𝑚 = 1 → ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) = ((1 + 𝐸) · Σ𝑗 ∈ {1} (𝑃‘𝑗))) |
190 | 189 | breq2d 5086 |
. . . . 5
⊢ (𝑚 = 1 → (𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) ↔ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ {1} (𝑃‘𝑗)))) |
191 | 190 | rspcev 3561 |
. . . 4
⊢ ((1
∈ ℕ ∧ 𝐺 ≤
((1 + 𝐸) ·
Σ𝑗 ∈ {1} (𝑃‘𝑗))) → ∃𝑚 ∈ ℕ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) |
192 | 2, 181, 191 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = ∅) → ∃𝑚 ∈ ℕ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) |
193 | | simpl 483 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑌 = ∅) → 𝜑) |
194 | | neqne 2951 |
. . . . 5
⊢ (¬
𝑌 = ∅ → 𝑌 ≠ ∅) |
195 | 194 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑌 = ∅) → 𝑌 ≠ ∅) |
196 | | nfv 1917 |
. . . . . 6
⊢
Ⅎ𝑗(𝜑 ∧ 𝑌 ≠ ∅) |
197 | 183 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → 1 ∈
ℤ) |
198 | | nnuz 12621 |
. . . . . 6
⊢ ℕ =
(ℤ≥‘1) |
199 | 114 | adantlr 712 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑌 ≠ ∅) ∧ 𝑗 ∈ ℕ) → (𝑃‘𝑗) ∈ (0[,)+∞)) |
200 | | hoidmvlelem3.a |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴:𝑊⟶ℝ) |
201 | 66 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑌 ⊆ 𝑊) |
202 | 200, 201 | fssresd 6641 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 ↾ 𝑌):𝑌⟶ℝ) |
203 | | hoidmvlelem3.b |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵:𝑊⟶ℝ) |
204 | 203, 201 | fssresd 6641 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐵 ↾ 𝑌):𝑌⟶ℝ) |
205 | 18, 58, 202, 204 | hoidmvcl 44120 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ∈ (0[,)+∞)) |
206 | 28, 205 | sselid 3919 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ∈ ℝ) |
207 | 5, 206 | eqeltrid 2843 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ ℝ) |
208 | | 0red 10978 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈
ℝ) |
209 | | 1rp 12734 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℝ+ |
210 | 209 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ∈
ℝ+) |
211 | 210, 172 | jca 512 |
. . . . . . . . . . 11
⊢ (𝜑 → (1 ∈
ℝ+ ∧ 𝐸
∈ ℝ+)) |
212 | | rpaddcl 12752 |
. . . . . . . . . . 11
⊢ ((1
∈ ℝ+ ∧ 𝐸 ∈ ℝ+) → (1 +
𝐸) ∈
ℝ+) |
213 | 211, 212 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (1 + 𝐸) ∈
ℝ+) |
214 | | rpgt0 12742 |
. . . . . . . . . 10
⊢ ((1 +
𝐸) ∈
ℝ+ → 0 < (1 + 𝐸)) |
215 | 213, 214 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 0 < (1 + 𝐸)) |
216 | 208, 215 | gtned 11110 |
. . . . . . . 8
⊢ (𝜑 → (1 + 𝐸) ≠ 0) |
217 | 207, 174,
216 | redivcld 11803 |
. . . . . . 7
⊢ (𝜑 → (𝐺 / (1 + 𝐸)) ∈ ℝ) |
218 | 217 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → (𝐺 / (1 + 𝐸)) ∈ ℝ) |
219 | 217 | ltpnfd 12857 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺 / (1 + 𝐸)) < +∞) |
220 | 219 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) = +∞) → (𝐺 / (1 + 𝐸)) < +∞) |
221 | | id 22 |
. . . . . . . . . . 11
⊢
((Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) = +∞ →
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) = +∞) |
222 | 221 | eqcomd 2744 |
. . . . . . . . . 10
⊢
((Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) = +∞ → +∞ =
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗)))) |
223 | 222 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) = +∞) → +∞ =
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗)))) |
224 | 220, 223 | breqtrd 5100 |
. . . . . . . 8
⊢ ((𝜑 ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) = +∞) → (𝐺 / (1 + 𝐸)) <
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗)))) |
225 | 224 | adantlr 712 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑌 ≠ ∅) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) = +∞) → (𝐺 / (1 + 𝐸)) <
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗)))) |
226 | | simpl 483 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑌 ≠ ∅) ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) = +∞) → (𝜑 ∧ 𝑌 ≠ ∅)) |
227 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) = +∞) → ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) = +∞) |
228 | | nnex 11979 |
. . . . . . . . . . . 12
⊢ ℕ
∈ V |
229 | 228 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) = +∞) → ℕ ∈
V) |
230 | | icossicc 13168 |
. . . . . . . . . . . . . 14
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
231 | 230, 114 | sselid 3919 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑃‘𝑗) ∈ (0[,]+∞)) |
232 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ℕ ↦ (𝑃‘𝑗)) = (𝑗 ∈ ℕ ↦ (𝑃‘𝑗)) |
233 | 231, 232 | fmptd 6988 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ (𝑃‘𝑗)):ℕ⟶(0[,]+∞)) |
234 | 233 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) = +∞) → (𝑗 ∈ ℕ ↦ (𝑃‘𝑗)):ℕ⟶(0[,]+∞)) |
235 | 229, 234 | sge0repnf 43924 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) = +∞) →
((Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) ∈ ℝ ↔ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) = +∞)) |
236 | 227, 235 | mpbird 256 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) = +∞) →
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) ∈ ℝ) |
237 | 236 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑌 ≠ ∅) ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) = +∞) →
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) ∈ ℝ) |
238 | 218 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑌 ≠ ∅) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) ∈ ℝ) → (𝐺 / (1 + 𝐸)) ∈ ℝ) |
239 | 207 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) ∈ ℝ) → 𝐺 ∈ ℝ) |
240 | 239 | adantlr 712 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑌 ≠ ∅) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) ∈ ℝ) → 𝐺 ∈ ℝ) |
241 | | simpr 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑌 ≠ ∅) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) ∈ ℝ) →
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) ∈ ℝ) |
242 | 27, 172 | ltaddrpd 12805 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 < (1 + 𝐸)) |
243 | 242 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → 1 < (1 + 𝐸)) |
244 | 58 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → 𝑌 ∈ Fin) |
245 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → 𝑌 ≠ ∅) |
246 | 202 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → (𝐴 ↾ 𝑌):𝑌⟶ℝ) |
247 | 204 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → (𝐵 ↾ 𝑌):𝑌⟶ℝ) |
248 | 18, 244, 245, 246, 247 | hoidmvn0val 44122 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) = ∏𝑘 ∈ 𝑌 (vol‘(((𝐴 ↾ 𝑌)‘𝑘)[,)((𝐵 ↾ 𝑌)‘𝑘)))) |
249 | 5 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → 𝐺 = ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌))) |
250 | | fvres 6793 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ 𝑌 → ((𝐴 ↾ 𝑌)‘𝑘) = (𝐴‘𝑘)) |
251 | | fvres 6793 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ 𝑌 → ((𝐵 ↾ 𝑌)‘𝑘) = (𝐵‘𝑘)) |
252 | 250, 251 | oveq12d 7293 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ 𝑌 → (((𝐴 ↾ 𝑌)‘𝑘)[,)((𝐵 ↾ 𝑌)‘𝑘)) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
253 | 252 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ 𝑌 → (vol‘(((𝐴 ↾ 𝑌)‘𝑘)[,)((𝐵 ↾ 𝑌)‘𝑘))) = (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
254 | 253 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → (vol‘(((𝐴 ↾ 𝑌)‘𝑘)[,)((𝐵 ↾ 𝑌)‘𝑘))) = (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
255 | 200 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → 𝐴:𝑊⟶ℝ) |
256 | | elun1 4110 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ 𝑌 → 𝑘 ∈ (𝑌 ∪ {𝑍})) |
257 | 256, 44 | eleqtrrdi 2850 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ 𝑌 → 𝑘 ∈ 𝑊) |
258 | 257 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → 𝑘 ∈ 𝑊) |
259 | 255, 258 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → (𝐴‘𝑘) ∈ ℝ) |
260 | 203 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → 𝐵:𝑊⟶ℝ) |
261 | 260, 258 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → (𝐵‘𝑘) ∈ ℝ) |
262 | | volico 43524 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴‘𝑘) ∈ ℝ ∧ (𝐵‘𝑘) ∈ ℝ) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = if((𝐴‘𝑘) < (𝐵‘𝑘), ((𝐵‘𝑘) − (𝐴‘𝑘)), 0)) |
263 | 259, 261,
262 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = if((𝐴‘𝑘) < (𝐵‘𝑘), ((𝐵‘𝑘) − (𝐴‘𝑘)), 0)) |
264 | | hoidmvlelem3.lt |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → (𝐴‘𝑘) < (𝐵‘𝑘)) |
265 | 258, 264 | syldan 591 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → (𝐴‘𝑘) < (𝐵‘𝑘)) |
266 | 265 | iftrued 4467 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → if((𝐴‘𝑘) < (𝐵‘𝑘), ((𝐵‘𝑘) − (𝐴‘𝑘)), 0) = ((𝐵‘𝑘) − (𝐴‘𝑘))) |
267 | 254, 263,
266 | 3eqtrd 2782 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → (vol‘(((𝐴 ↾ 𝑌)‘𝑘)[,)((𝐵 ↾ 𝑌)‘𝑘))) = ((𝐵‘𝑘) − (𝐴‘𝑘))) |
268 | 267 | prodeq2dv 15633 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∏𝑘 ∈ 𝑌 (vol‘(((𝐴 ↾ 𝑌)‘𝑘)[,)((𝐵 ↾ 𝑌)‘𝑘))) = ∏𝑘 ∈ 𝑌 ((𝐵‘𝑘) − (𝐴‘𝑘))) |
269 | 268 | eqcomd 2744 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∏𝑘 ∈ 𝑌 ((𝐵‘𝑘) − (𝐴‘𝑘)) = ∏𝑘 ∈ 𝑌 (vol‘(((𝐴 ↾ 𝑌)‘𝑘)[,)((𝐵 ↾ 𝑌)‘𝑘)))) |
270 | 269 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → ∏𝑘 ∈ 𝑌 ((𝐵‘𝑘) − (𝐴‘𝑘)) = ∏𝑘 ∈ 𝑌 (vol‘(((𝐴 ↾ 𝑌)‘𝑘)[,)((𝐵 ↾ 𝑌)‘𝑘)))) |
271 | 248, 249,
270 | 3eqtr4d 2788 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → 𝐺 = ∏𝑘 ∈ 𝑌 ((𝐵‘𝑘) − (𝐴‘𝑘))) |
272 | | difrp 12768 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴‘𝑘) ∈ ℝ ∧ (𝐵‘𝑘) ∈ ℝ) → ((𝐴‘𝑘) < (𝐵‘𝑘) ↔ ((𝐵‘𝑘) − (𝐴‘𝑘)) ∈
ℝ+)) |
273 | 259, 261,
272 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → ((𝐴‘𝑘) < (𝐵‘𝑘) ↔ ((𝐵‘𝑘) − (𝐴‘𝑘)) ∈
ℝ+)) |
274 | 265, 273 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → ((𝐵‘𝑘) − (𝐴‘𝑘)) ∈
ℝ+) |
275 | 58, 274 | fprodrpcl 15666 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∏𝑘 ∈ 𝑌 ((𝐵‘𝑘) − (𝐴‘𝑘)) ∈
ℝ+) |
276 | 275 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → ∏𝑘 ∈ 𝑌 ((𝐵‘𝑘) − (𝐴‘𝑘)) ∈
ℝ+) |
277 | 271, 276 | eqeltrd 2839 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → 𝐺 ∈
ℝ+) |
278 | 213 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → (1 + 𝐸) ∈
ℝ+) |
279 | 277, 278 | ltdivgt1 42895 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → (1 < (1 + 𝐸) ↔ (𝐺 / (1 + 𝐸)) < 𝐺)) |
280 | 243, 279 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → (𝐺 / (1 + 𝐸)) < 𝐺) |
281 | 280 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑌 ≠ ∅) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) ∈ ℝ) → (𝐺 / (1 + 𝐸)) < 𝐺) |
282 | | hoidmvlelem3.i2 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → X𝑘 ∈
𝑊 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
283 | 282 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → X𝑘 ∈ 𝑊 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
284 | | fvexd 6789 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (𝑥‘𝑘) ∈ V) |
285 | | hoidmvlelem3.s |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝑆 ∈ 𝑈) |
286 | 285 | elexd 3452 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝑆 ∈ V) |
287 | 284, 286 | ifcld 4505 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) ∈ V) |
288 | 287 | ralrimivw 3104 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → ∀𝑘 ∈ 𝑊 if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) ∈ V) |
289 | 288 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → ∀𝑘 ∈ 𝑊 if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) ∈ V) |
290 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) = (𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) |
291 | 290 | fnmpt 6573 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∀𝑘 ∈
𝑊 if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) ∈ V → (𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) Fn 𝑊) |
292 | 289, 291 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → (𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) Fn 𝑊) |
293 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
294 | | mptexg 7097 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑊 ∈ Fin → (𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) ∈ V) |
295 | 53, 294 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) ∈ V) |
296 | 295 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → (𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) ∈ V) |
297 | | hoidmvlelem3.o |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 𝑂 = (𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ↦ (𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆))) |
298 | 297 | fvmpt2 6886 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ∧ (𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) ∈ V) → (𝑂‘𝑥) = (𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆))) |
299 | 293, 296,
298 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → (𝑂‘𝑥) = (𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆))) |
300 | 299 | fneq1d 6526 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → ((𝑂‘𝑥) Fn 𝑊 ↔ (𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) Fn 𝑊)) |
301 | 292, 300 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → (𝑂‘𝑥) Fn 𝑊) |
302 | | nfv 1917 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘𝜑 |
303 | | nfcv 2907 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑘𝑥 |
304 | | nfixp1 8706 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑘X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) |
305 | 303, 304 | nfel 2921 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘 𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) |
306 | 302, 305 | nfan 1902 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘(𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
307 | 299 | fveq1d 6776 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → ((𝑂‘𝑥)‘𝑘) = ((𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆))‘𝑘)) |
308 | 307 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑘 ∈ 𝑊) → ((𝑂‘𝑥)‘𝑘) = ((𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆))‘𝑘)) |
309 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → 𝑘 ∈ 𝑊) |
310 | 287 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) ∈ V) |
311 | 290 | fvmpt2 6886 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑘 ∈ 𝑊 ∧ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) ∈ V) → ((𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆))‘𝑘) = if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) |
312 | 309, 310,
311 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → ((𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆))‘𝑘) = if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) |
313 | 312 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑘 ∈ 𝑊) → ((𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆))‘𝑘) = if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) |
314 | 308, 313 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑘 ∈ 𝑊) → ((𝑂‘𝑥)‘𝑘) = if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) |
315 | | iftrue 4465 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑘 ∈ 𝑌 → if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) = (𝑥‘𝑘)) |
316 | 315 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑘 ∈ 𝑊) ∧ 𝑘 ∈ 𝑌) → if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) = (𝑥‘𝑘)) |
317 | | vex 3436 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ 𝑥 ∈ V |
318 | 317 | elixp 8692 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ↔ (𝑥 Fn 𝑌 ∧ ∀𝑘 ∈ 𝑌 (𝑥‘𝑘) ∈ ((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
319 | 318 | simprbi 497 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) → ∀𝑘 ∈ 𝑌 (𝑥‘𝑘) ∈ ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
320 | 319 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ∧ 𝑘 ∈ 𝑌) → ∀𝑘 ∈ 𝑌 (𝑥‘𝑘) ∈ ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
321 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ∧ 𝑘 ∈ 𝑌) → 𝑘 ∈ 𝑌) |
322 | | rspa 3132 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((∀𝑘 ∈
𝑌 (𝑥‘𝑘) ∈ ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ∧ 𝑘 ∈ 𝑌) → (𝑥‘𝑘) ∈ ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
323 | 320, 321,
322 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ∧ 𝑘 ∈ 𝑌) → (𝑥‘𝑘) ∈ ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
324 | 323 | ad4ant24 751 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑘 ∈ 𝑊) ∧ 𝑘 ∈ 𝑌) → (𝑥‘𝑘) ∈ ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
325 | 316, 324 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑘 ∈ 𝑊) ∧ 𝑘 ∈ 𝑌) → if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) ∈ ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
326 | | snidg 4595 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑍 ∈ (𝑋 ∖ 𝑌) → 𝑍 ∈ {𝑍}) |
327 | 47, 326 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝜑 → 𝑍 ∈ {𝑍}) |
328 | | elun2 4111 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑍 ∈ {𝑍} → 𝑍 ∈ (𝑌 ∪ {𝑍})) |
329 | 327, 328 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → 𝑍 ∈ (𝑌 ∪ {𝑍})) |
330 | 55 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → (𝑌 ∪ {𝑍}) = 𝑊) |
331 | 329, 330 | eleqtrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → 𝑍 ∈ 𝑊) |
332 | 200, 331 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → (𝐴‘𝑍) ∈ ℝ) |
333 | 332 | rexrd 11025 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → (𝐴‘𝑍) ∈
ℝ*) |
334 | 203, 331 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → (𝐵‘𝑍) ∈ ℝ) |
335 | 334 | rexrd 11025 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → (𝐵‘𝑍) ∈
ℝ*) |
336 | | iccssxr 13162 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ⊆
ℝ* |
337 | | hoidmvlelem3.u |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ 𝑈 = {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} |
338 | | ssrab2 4013 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} ⊆ ((𝐴‘𝑍)[,](𝐵‘𝑍)) |
339 | 337, 338 | eqsstri 3955 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ 𝑈 ⊆ ((𝐴‘𝑍)[,](𝐵‘𝑍)) |
340 | 339, 285 | sselid 3919 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → 𝑆 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) |
341 | 336, 340 | sselid 3919 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → 𝑆 ∈
ℝ*) |
342 | | iccgelb 13135 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝐴‘𝑍) ∈ ℝ* ∧ (𝐵‘𝑍) ∈ ℝ* ∧ 𝑆 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) → (𝐴‘𝑍) ≤ 𝑆) |
343 | 333, 335,
340, 342 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → (𝐴‘𝑍) ≤ 𝑆) |
344 | | hoidmvlelem3.sb |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → 𝑆 < (𝐵‘𝑍)) |
345 | 333, 335,
341, 343, 344 | elicod 13129 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → 𝑆 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) |
346 | 345 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑊) ∧ ¬ 𝑘 ∈ 𝑌) → 𝑆 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) |
347 | | iffalse 4468 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (¬
𝑘 ∈ 𝑌 → if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) = 𝑆) |
348 | 347 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑊) ∧ ¬ 𝑘 ∈ 𝑌) → if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) = 𝑆) |
349 | 44 | eleq2i 2830 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑘 ∈ 𝑊 ↔ 𝑘 ∈ (𝑌 ∪ {𝑍})) |
350 | 349 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑘 ∈ 𝑊 → 𝑘 ∈ (𝑌 ∪ {𝑍})) |
351 | 350 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑘 ∈ 𝑊 ∧ ¬ 𝑘 ∈ 𝑌) → 𝑘 ∈ (𝑌 ∪ {𝑍})) |
352 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑘 ∈ 𝑊 ∧ ¬ 𝑘 ∈ 𝑌) → ¬ 𝑘 ∈ 𝑌) |
353 | | elunnel1 4084 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑘 ∈ (𝑌 ∪ {𝑍}) ∧ ¬ 𝑘 ∈ 𝑌) → 𝑘 ∈ {𝑍}) |
354 | 351, 352,
353 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑘 ∈ 𝑊 ∧ ¬ 𝑘 ∈ 𝑌) → 𝑘 ∈ {𝑍}) |
355 | | elsni 4578 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑘 ∈ {𝑍} → 𝑘 = 𝑍) |
356 | 354, 355 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑘 ∈ 𝑊 ∧ ¬ 𝑘 ∈ 𝑌) → 𝑘 = 𝑍) |
357 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑘 = 𝑍 → (𝐴‘𝑘) = (𝐴‘𝑍)) |
358 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑘 = 𝑍 → (𝐵‘𝑘) = (𝐵‘𝑍)) |
359 | 357, 358 | oveq12d 7293 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑘 = 𝑍 → ((𝐴‘𝑘)[,)(𝐵‘𝑘)) = ((𝐴‘𝑍)[,)(𝐵‘𝑍))) |
360 | 356, 359 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑘 ∈ 𝑊 ∧ ¬ 𝑘 ∈ 𝑌) → ((𝐴‘𝑘)[,)(𝐵‘𝑘)) = ((𝐴‘𝑍)[,)(𝐵‘𝑍))) |
361 | 360 | adantll 711 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑊) ∧ ¬ 𝑘 ∈ 𝑌) → ((𝐴‘𝑘)[,)(𝐵‘𝑘)) = ((𝐴‘𝑍)[,)(𝐵‘𝑍))) |
362 | 348, 361 | eleq12d 2833 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑊) ∧ ¬ 𝑘 ∈ 𝑌) → (if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) ∈ ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ↔ 𝑆 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍)))) |
363 | 346, 362 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑊) ∧ ¬ 𝑘 ∈ 𝑌) → if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) ∈ ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
364 | 363 | adantllr 716 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑘 ∈ 𝑊) ∧ ¬ 𝑘 ∈ 𝑌) → if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) ∈ ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
365 | 325, 364 | pm2.61dan 810 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑘 ∈ 𝑊) → if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) ∈ ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
366 | 314, 365 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑘 ∈ 𝑊) → ((𝑂‘𝑥)‘𝑘) ∈ ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
367 | 366 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → (𝑘 ∈ 𝑊 → ((𝑂‘𝑥)‘𝑘) ∈ ((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
368 | 306, 367 | ralrimi 3141 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → ∀𝑘 ∈ 𝑊 ((𝑂‘𝑥)‘𝑘) ∈ ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
369 | 301, 368 | jca 512 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → ((𝑂‘𝑥) Fn 𝑊 ∧ ∀𝑘 ∈ 𝑊 ((𝑂‘𝑥)‘𝑘) ∈ ((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
370 | | fvex 6787 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑂‘𝑥) ∈ V |
371 | 370 | elixp 8692 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ↔ ((𝑂‘𝑥) Fn 𝑊 ∧ ∀𝑘 ∈ 𝑊 ((𝑂‘𝑥)‘𝑘) ∈ ((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
372 | 369, 371 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
373 | 283, 372 | sseldd 3922 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → (𝑂‘𝑥) ∈ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
374 | | eliun 4928 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑂‘𝑥) ∈ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ↔ ∃𝑗 ∈ ℕ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
375 | 373, 374 | sylib 217 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → ∃𝑗 ∈ ℕ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
376 | | ixpfn 8691 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) → 𝑥 Fn 𝑌) |
377 | 376 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → 𝑥 Fn 𝑌) |
378 | 377 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → 𝑥 Fn 𝑌) |
379 | | nfv 1917 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑘 𝑗 ∈ ℕ |
380 | 306, 379 | nfan 1902 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) |
381 | | nfcv 2907 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑘(𝑂‘𝑥) |
382 | | nfixp1 8706 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑘X𝑘 ∈
𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) |
383 | 381, 382 | nfel 2921 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘(𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) |
384 | 380, 383 | nfan 1902 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘(((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
385 | 307 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ∧ 𝑘 ∈ 𝑌) → ((𝑂‘𝑥)‘𝑘) = ((𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆))‘𝑘)) |
386 | 287 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) ∈ V) |
387 | 258, 386,
311 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → ((𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆))‘𝑘) = if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) |
388 | 387 | 3adant2 1130 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ∧ 𝑘 ∈ 𝑌) → ((𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆))‘𝑘) = if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) |
389 | 315 | 3ad2ant3 1134 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ∧ 𝑘 ∈ 𝑌) → if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) = (𝑥‘𝑘)) |
390 | 385, 388,
389 | 3eqtrrd 2783 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ∧ 𝑘 ∈ 𝑌) → (𝑥‘𝑘) = ((𝑂‘𝑥)‘𝑘)) |
391 | 390 | ad5ant125 1365 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑌) → (𝑥‘𝑘) = ((𝑂‘𝑥)‘𝑘)) |
392 | | simpl 483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ∧ 𝑘 ∈ 𝑌) → (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
393 | 370 | elixp 8692 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ↔ ((𝑂‘𝑥) Fn 𝑊 ∧ ∀𝑘 ∈ 𝑊 ((𝑂‘𝑥)‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
394 | 392, 393 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ∧ 𝑘 ∈ 𝑌) → ((𝑂‘𝑥) Fn 𝑊 ∧ ∀𝑘 ∈ 𝑊 ((𝑂‘𝑥)‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
395 | 394 | simprd 496 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ∧ 𝑘 ∈ 𝑌) → ∀𝑘 ∈ 𝑊 ((𝑂‘𝑥)‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
396 | 257 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ∧ 𝑘 ∈ 𝑌) → 𝑘 ∈ 𝑊) |
397 | | rspa 3132 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((∀𝑘 ∈
𝑊 ((𝑂‘𝑥)‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ∧ 𝑘 ∈ 𝑊) → ((𝑂‘𝑥)‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
398 | 395, 396,
397 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ∧ 𝑘 ∈ 𝑌) → ((𝑂‘𝑥)‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
399 | 398 | adantll 711 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑌) → ((𝑂‘𝑥)‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
400 | 391, 399 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑌) → (𝑥‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
401 | 29 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → 𝜑) |
402 | 37 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → 𝑗 ∈ ℕ) |
403 | 299 | fveq1d 6776 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → ((𝑂‘𝑥)‘𝑍) = ((𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆))‘𝑍)) |
404 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝜑 → (𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) = (𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆))) |
405 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑘 = 𝑍 → (𝑘 ∈ 𝑌 ↔ 𝑍 ∈ 𝑌)) |
406 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑘 = 𝑍 → (𝑥‘𝑘) = (𝑥‘𝑍)) |
407 | 405, 406 | ifbieq1d 4483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑘 = 𝑍 → if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) = if(𝑍 ∈ 𝑌, (𝑥‘𝑍), 𝑆)) |
408 | 407 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝜑 ∧ 𝑘 = 𝑍) → if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆) = if(𝑍 ∈ 𝑌, (𝑥‘𝑍), 𝑆)) |
409 | | fvexd 6789 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝜑 → (𝑥‘𝑍) ∈ V) |
410 | 409, 286 | ifcld 4505 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝜑 → if(𝑍 ∈ 𝑌, (𝑥‘𝑍), 𝑆) ∈ V) |
411 | 404, 408,
331, 410 | fvmptd 6882 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝜑 → ((𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆))‘𝑍) = if(𝑍 ∈ 𝑌, (𝑥‘𝑍), 𝑆)) |
412 | 411 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → ((𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆))‘𝑍) = if(𝑍 ∈ 𝑌, (𝑥‘𝑍), 𝑆)) |
413 | 47 | eldifbd 3900 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝜑 → ¬ 𝑍 ∈ 𝑌) |
414 | 413 | iffalsed 4470 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝜑 → if(𝑍 ∈ 𝑌, (𝑥‘𝑍), 𝑆) = 𝑆) |
415 | 414 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → if(𝑍 ∈ 𝑌, (𝑥‘𝑍), 𝑆) = 𝑆) |
416 | 403, 412,
415 | 3eqtrrd 2783 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → 𝑆 = ((𝑂‘𝑥)‘𝑍)) |
417 | 416 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → 𝑆 = ((𝑂‘𝑥)‘𝑍)) |
418 | 401, 331 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → 𝑍 ∈ 𝑊) |
419 | 393 | simprbi 497 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → ∀𝑘 ∈ 𝑊 ((𝑂‘𝑥)‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
420 | 419 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → ∀𝑘 ∈ 𝑊 ((𝑂‘𝑥)‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
421 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑘 = 𝑍 → ((𝑂‘𝑥)‘𝑘) = ((𝑂‘𝑥)‘𝑍)) |
422 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑘 = 𝑍 → ((𝐶‘𝑗)‘𝑘) = ((𝐶‘𝑗)‘𝑍)) |
423 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑘 = 𝑍 → ((𝐷‘𝑗)‘𝑘) = ((𝐷‘𝑗)‘𝑍)) |
424 | 422, 423 | oveq12d 7293 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑘 = 𝑍 → (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
425 | 421, 424 | eleq12d 2833 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑘 = 𝑍 → (((𝑂‘𝑥)‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ↔ ((𝑂‘𝑥)‘𝑍) ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))) |
426 | 425 | rspcva 3559 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑍 ∈ 𝑊 ∧ ∀𝑘 ∈ 𝑊 ((𝑂‘𝑥)‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → ((𝑂‘𝑥)‘𝑍) ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
427 | 418, 420,
426 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → ((𝑂‘𝑥)‘𝑍) ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
428 | 417, 427 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
429 | 149 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → (𝐽‘𝑗) = if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹)) |
430 | 60 | 3ad2ant3 1134 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) = ((𝐶‘𝑗) ↾ 𝑌)) |
431 | 429, 430 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → (𝐽‘𝑗) = ((𝐶‘𝑗) ↾ 𝑌)) |
432 | 431 | fveq1d 6776 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → ((𝐽‘𝑗)‘𝑘) = (((𝐶‘𝑗) ↾ 𝑌)‘𝑘)) |
433 | 401, 402,
428, 432 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → ((𝐽‘𝑗)‘𝑘) = (((𝐶‘𝑗) ↾ 𝑌)‘𝑘)) |
434 | 433 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑌) → ((𝐽‘𝑗)‘𝑘) = (((𝐶‘𝑗) ↾ 𝑌)‘𝑘)) |
435 | | fvres 6793 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑘 ∈ 𝑌 → (((𝐶‘𝑗) ↾ 𝑌)‘𝑘) = ((𝐶‘𝑗)‘𝑘)) |
436 | 435 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑌) → (((𝐶‘𝑗) ↾ 𝑌)‘𝑘) = ((𝐶‘𝑗)‘𝑘)) |
437 | 434, 436 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑌) → ((𝐽‘𝑗)‘𝑘) = ((𝐶‘𝑗)‘𝑘)) |
438 | 107 | elexd 3452 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹) ∈ V) |
439 | 108 | fvmpt2 6886 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑗 ∈ ℕ ∧ if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹) ∈ V) → (𝐾‘𝑗) = if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹)) |
440 | 139, 438,
439 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐾‘𝑗) = if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹)) |
441 | 440 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → (𝐾‘𝑗) = if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹)) |
442 | 93 | 3ad2ant3 1134 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹) = ((𝐷‘𝑗) ↾ 𝑌)) |
443 | 441, 442 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → (𝐾‘𝑗) = ((𝐷‘𝑗) ↾ 𝑌)) |
444 | 443 | fveq1d 6776 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → ((𝐾‘𝑗)‘𝑘) = (((𝐷‘𝑗) ↾ 𝑌)‘𝑘)) |
445 | 401, 402,
428, 444 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → ((𝐾‘𝑗)‘𝑘) = (((𝐷‘𝑗) ↾ 𝑌)‘𝑘)) |
446 | 445 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑌) → ((𝐾‘𝑗)‘𝑘) = (((𝐷‘𝑗) ↾ 𝑌)‘𝑘)) |
447 | | fvres 6793 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑘 ∈ 𝑌 → (((𝐷‘𝑗) ↾ 𝑌)‘𝑘) = ((𝐷‘𝑗)‘𝑘)) |
448 | 447 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑌) → (((𝐷‘𝑗) ↾ 𝑌)‘𝑘) = ((𝐷‘𝑗)‘𝑘)) |
449 | 446, 448 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑌) → ((𝐾‘𝑗)‘𝑘) = ((𝐷‘𝑗)‘𝑘)) |
450 | 437, 449 | oveq12d 7293 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑌) → (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘)) = (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
451 | 450 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑌) → (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘))) |
452 | 400, 451 | eleqtrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑌) → (𝑥‘𝑘) ∈ (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘))) |
453 | 452 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → (𝑘 ∈ 𝑌 → (𝑥‘𝑘) ∈ (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘)))) |
454 | 384, 453 | ralrimi 3141 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → ∀𝑘 ∈ 𝑌 (𝑥‘𝑘) ∈ (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘))) |
455 | 378, 454 | jca 512 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → (𝑥 Fn 𝑌 ∧ ∀𝑘 ∈ 𝑌 (𝑥‘𝑘) ∈ (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘)))) |
456 | 317 | elixp 8692 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ X𝑘 ∈
𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘)) ↔ (𝑥 Fn 𝑌 ∧ ∀𝑘 ∈ 𝑌 (𝑥‘𝑘) ∈ (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘)))) |
457 | 455, 456 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) ∧ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → 𝑥 ∈ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘))) |
458 | 457 | ex 413 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∧ 𝑗 ∈ ℕ) → ((𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → 𝑥 ∈ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘)))) |
459 | 458 | reximdva 3203 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → (∃𝑗 ∈ ℕ (𝑂‘𝑥) ∈ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → ∃𝑗 ∈ ℕ 𝑥 ∈ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘)))) |
460 | 375, 459 | mpd 15 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → ∃𝑗 ∈ ℕ 𝑥 ∈ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘))) |
461 | | eliun 4928 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘)) ↔ ∃𝑗 ∈ ℕ 𝑥 ∈ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘))) |
462 | 460, 461 | sylibr 233 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) → 𝑥 ∈ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘))) |
463 | 462 | ralrimiva 3103 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑥 ∈ X 𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))𝑥 ∈ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘))) |
464 | | dfss3 3909 |
. . . . . . . . . . . . . . 15
⊢ (X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘)) ↔ ∀𝑥 ∈ X 𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))𝑥 ∈ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘))) |
465 | 463, 464 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘))) |
466 | | ovexd 7310 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (ℝ
↑m 𝑌)
∈ V) |
467 | 228 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ℕ ∈
V) |
468 | 466, 467 | elmapd 8629 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐾 ∈ ((ℝ ↑m 𝑌) ↑m ℕ)
↔ 𝐾:ℕ⟶(ℝ ↑m
𝑌))) |
469 | 109, 468 | mpbird 256 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐾 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)) |
470 | 466, 467 | elmapd 8629 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐽 ∈ ((ℝ ↑m 𝑌) ↑m ℕ)
↔ 𝐽:ℕ⟶(ℝ ↑m
𝑌))) |
471 | 89, 470 | mpbird 256 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐽 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)) |
472 | 82, 71 | elmapd 8629 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝐵 ↾ 𝑌) ∈ (ℝ ↑m 𝑌) ↔ (𝐵 ↾ 𝑌):𝑌⟶ℝ)) |
473 | 204, 472 | mpbird 256 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐵 ↾ 𝑌) ∈ (ℝ ↑m 𝑌)) |
474 | 82, 71 | elmapd 8629 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝐴 ↾ 𝑌) ∈ (ℝ ↑m 𝑌) ↔ (𝐴 ↾ 𝑌):𝑌⟶ℝ)) |
475 | 202, 474 | mpbird 256 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐴 ↾ 𝑌) ∈ (ℝ ↑m 𝑌)) |
476 | | hoidmvlelem3.i |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑒 ∈ (ℝ ↑m 𝑌)∀𝑓 ∈ (ℝ ↑m 𝑌)∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘 ∈
𝑌 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) |
477 | | fveq1 6773 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑒 = (𝐴 ↾ 𝑌) → (𝑒‘𝑘) = ((𝐴 ↾ 𝑌)‘𝑘)) |
478 | 477 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑒 = (𝐴 ↾ 𝑌) ∧ 𝑘 ∈ 𝑌) → (𝑒‘𝑘) = ((𝐴 ↾ 𝑌)‘𝑘)) |
479 | 250 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑒 = (𝐴 ↾ 𝑌) ∧ 𝑘 ∈ 𝑌) → ((𝐴 ↾ 𝑌)‘𝑘) = (𝐴‘𝑘)) |
480 | 478, 479 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑒 = (𝐴 ↾ 𝑌) ∧ 𝑘 ∈ 𝑌) → (𝑒‘𝑘) = (𝐴‘𝑘)) |
481 | 480 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑒 = (𝐴 ↾ 𝑌) ∧ 𝑘 ∈ 𝑌) → ((𝑒‘𝑘)[,)(𝑓‘𝑘)) = ((𝐴‘𝑘)[,)(𝑓‘𝑘))) |
482 | 481 | ixpeq2dva 8700 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑒 = (𝐴 ↾ 𝑌) → X𝑘 ∈ 𝑌 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) = X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝑓‘𝑘))) |
483 | 482 | sseq1d 3952 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑒 = (𝐴 ↾ 𝑌) → (X𝑘 ∈ 𝑌 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) ↔ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)))) |
484 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑒 = (𝐴 ↾ 𝑌) → (𝑒(𝐿‘𝑌)𝑓) = ((𝐴 ↾ 𝑌)(𝐿‘𝑌)𝑓)) |
485 | 484 | breq1d 5084 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑒 = (𝐴 ↾ 𝑌) → ((𝑒(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))) ↔ ((𝐴 ↾ 𝑌)(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) |
486 | 483, 485 | imbi12d 345 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑒 = (𝐴 ↾ 𝑌) → ((X𝑘 ∈ 𝑌 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))) ↔ (X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))))) |
487 | 486 | ralbidv 3112 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑒 = (𝐴 ↾ 𝑌) → (∀ℎ ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)(X𝑘 ∈ 𝑌 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))) ↔ ∀ℎ ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)(X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))))) |
488 | 487 | ralbidv 3112 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑒 = (𝐴 ↾ 𝑌) → (∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘 ∈
𝑌 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))) ↔ ∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))))) |
489 | 488 | ralbidv 3112 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑒 = (𝐴 ↾ 𝑌) → (∀𝑓 ∈ (ℝ ↑m 𝑌)∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘 ∈
𝑌 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))) ↔ ∀𝑓 ∈ (ℝ ↑m 𝑌)∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))))) |
490 | 489 | rspcva 3559 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ↾ 𝑌) ∈ (ℝ ↑m 𝑌) ∧ ∀𝑒 ∈ (ℝ
↑m 𝑌)∀𝑓 ∈ (ℝ ↑m 𝑌)∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘 ∈
𝑌 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) → ∀𝑓 ∈ (ℝ ↑m 𝑌)∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) |
491 | 475, 476,
490 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑓 ∈ (ℝ ↑m 𝑌)∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) |
492 | | fveq1 6773 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑓 = (𝐵 ↾ 𝑌) → (𝑓‘𝑘) = ((𝐵 ↾ 𝑌)‘𝑘)) |
493 | 492 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑓 = (𝐵 ↾ 𝑌) ∧ 𝑘 ∈ 𝑌) → (𝑓‘𝑘) = ((𝐵 ↾ 𝑌)‘𝑘)) |
494 | 251 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑓 = (𝐵 ↾ 𝑌) ∧ 𝑘 ∈ 𝑌) → ((𝐵 ↾ 𝑌)‘𝑘) = (𝐵‘𝑘)) |
495 | 493, 494 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑓 = (𝐵 ↾ 𝑌) ∧ 𝑘 ∈ 𝑌) → (𝑓‘𝑘) = (𝐵‘𝑘)) |
496 | 495 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓 = (𝐵 ↾ 𝑌) ∧ 𝑘 ∈ 𝑌) → ((𝐴‘𝑘)[,)(𝑓‘𝑘)) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
497 | 496 | ixpeq2dva 8700 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 = (𝐵 ↾ 𝑌) → X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝑓‘𝑘)) = X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
498 | 497 | sseq1d 3952 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 = (𝐵 ↾ 𝑌) → (X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) ↔ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)))) |
499 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 = (𝐵 ↾ 𝑌) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)𝑓) = ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌))) |
500 | 499 | breq1d 5084 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 = (𝐵 ↾ 𝑌) → (((𝐴 ↾ 𝑌)(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))) ↔ ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) |
501 | 498, 500 | imbi12d 345 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = (𝐵 ↾ 𝑌) → ((X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))) ↔ (X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))))) |
502 | 501 | ralbidv 3112 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = (𝐵 ↾ 𝑌) → (∀ℎ ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)(X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))) ↔ ∀ℎ ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)(X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))))) |
503 | 502 | ralbidv 3112 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = (𝐵 ↾ 𝑌) → (∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))) ↔ ∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))))) |
504 | 503 | rspcva 3559 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐵 ↾ 𝑌) ∈ (ℝ ↑m 𝑌) ∧ ∀𝑓 ∈ (ℝ
↑m 𝑌)∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) → ∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) |
505 | 473, 491,
504 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) |
506 | | fveq1 6773 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑔 = 𝐽 → (𝑔‘𝑗) = (𝐽‘𝑗)) |
507 | 506 | fveq1d 6776 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑔 = 𝐽 → ((𝑔‘𝑗)‘𝑘) = ((𝐽‘𝑗)‘𝑘)) |
508 | 507 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑔 = 𝐽 → (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) = (((𝐽‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘))) |
509 | 508 | ixpeq2dv 8701 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔 = 𝐽 → X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) = X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘))) |
510 | 509 | iuneq2d 4953 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔 = 𝐽 → ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) = ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑌 (((𝐽‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘))) |
511 | 510 | sseq2d 3953 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑔 = 𝐽 → (X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) ↔ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)))) |
512 | 506 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑔 = 𝐽 → ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)) = ((𝐽‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))) |
513 | 512 | mpteq2dv 5176 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔 = 𝐽 → (𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))) = (𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))) |
514 | 513 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔 = 𝐽 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))) |
515 | 514 | breq2d 5086 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑔 = 𝐽 → (((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))) ↔ ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) |
516 | 511, 515 | imbi12d 345 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑔 = 𝐽 → ((X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))) ↔ (X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))))) |
517 | 516 | ralbidv 3112 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 = 𝐽 → (∀ℎ ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)(X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))) ↔ ∀ℎ ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)(X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))))) |
518 | 517 | rspcva 3559 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐽 ∈ ((ℝ
↑m 𝑌)
↑m ℕ) ∧ ∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) → ∀ℎ ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)(X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) |
519 | 471, 505,
518 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀ℎ ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)(X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) |
520 | | fveq1 6773 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (ℎ = 𝐾 → (ℎ‘𝑗) = (𝐾‘𝑗)) |
521 | 520 | fveq1d 6776 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ℎ = 𝐾 → ((ℎ‘𝑗)‘𝑘) = ((𝐾‘𝑗)‘𝑘)) |
522 | 521 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (ℎ = 𝐾 → (((𝐽‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) = (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘))) |
523 | 522 | ixpeq2dv 8701 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℎ = 𝐾 → X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) = X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘))) |
524 | 523 | iuneq2d 4953 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ = 𝐾 → ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑌 (((𝐽‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) = ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘))) |
525 | 524 | sseq2d 3953 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = 𝐾 → (X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) ↔ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘)))) |
526 | 520 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (ℎ = 𝐾 → ((𝐽‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)) = ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗))) |
527 | 526 | mpteq2dv 5176 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℎ = 𝐾 → (𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))) = (𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)))) |
528 | 527 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ = 𝐾 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗))))) |
529 | 528 | breq2d 5086 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = 𝐾 → (((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))) ↔ ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)))))) |
530 | 525, 529 | imbi12d 345 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ = 𝐾 → ((X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗))))) ↔ (X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗))))))) |
531 | 530 | rspcva 3559 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ ((ℝ
↑m 𝑌)
↑m ℕ) ∧ ∀ℎ ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)(X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) → (X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)))))) |
532 | 469, 519,
531 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (X𝑘 ∈
𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘)) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)))))) |
533 | 465, 532 | mpd 15 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗))))) |
534 | | idd 24 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)))) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)))))) |
535 | 533, 534 | mpd 15 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗))))) |
536 | 535 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗))))) |
537 | 41 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑌 ≠ ∅) ∧ 𝑗 ∈ ℕ) → (𝑃‘𝑗) = ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗))) |
538 | 537 | mpteq2dva 5174 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → (𝑗 ∈ ℕ ↦ (𝑃‘𝑗)) = (𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)))) |
539 | 538 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) →
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗))))) |
540 | 249, 539 | breq12d 5087 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → (𝐺 ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) ↔ ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)))))) |
541 | 536, 540 | mpbird 256 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → 𝐺 ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗)))) |
542 | 541 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑌 ≠ ∅) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) ∈ ℝ) → 𝐺 ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗)))) |
543 | 238, 240,
241, 281, 542 | ltletrd 11135 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑌 ≠ ∅) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) ∈ ℝ) → (𝐺 / (1 + 𝐸)) <
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗)))) |
544 | 226, 237,
543 | syl2anc 584 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑌 ≠ ∅) ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗))) = +∞) → (𝐺 / (1 + 𝐸)) <
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗)))) |
545 | 225, 544 | pm2.61dan 810 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → (𝐺 / (1 + 𝐸)) <
(Σ^‘(𝑗 ∈ ℕ ↦ (𝑃‘𝑗)))) |
546 | 196, 197,
198, 199, 218, 545 | sge0uzfsumgt 43982 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → ∃𝑚 ∈ ℕ (𝐺 / (1 + 𝐸)) < Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) |
547 | 217 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐺 / (1 + 𝐸)) < Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) → (𝐺 / (1 + 𝐸)) ∈ ℝ) |
548 | | fzfid 13693 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (1...𝑚) ∈ Fin) |
549 | | simpl 483 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑚)) → 𝜑) |
550 | | elfznn 13285 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (1...𝑚) → 𝑗 ∈ ℕ) |
551 | 550 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑚)) → 𝑗 ∈ ℕ) |
552 | 28, 114 | sselid 3919 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑃‘𝑗) ∈ ℝ) |
553 | 549, 551,
552 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑚)) → (𝑃‘𝑗) ∈ ℝ) |
554 | 548, 553 | fsumrecl 15446 |
. . . . . . . . . . . 12
⊢ (𝜑 → Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗) ∈ ℝ) |
555 | 554 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐺 / (1 + 𝐸)) < Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) → Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗) ∈ ℝ) |
556 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐺 / (1 + 𝐸)) < Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) → (𝐺 / (1 + 𝐸)) < Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) |
557 | 547, 555,
556 | ltled 11123 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐺 / (1 + 𝐸)) < Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) → (𝐺 / (1 + 𝐸)) ≤ Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) |
558 | 207 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐺 / (1 + 𝐸)) < Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) → 𝐺 ∈ ℝ) |
559 | 213 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐺 / (1 + 𝐸)) < Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) → (1 + 𝐸) ∈
ℝ+) |
560 | 558, 555,
559 | ledivmuld 12825 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐺 / (1 + 𝐸)) < Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) → ((𝐺 / (1 + 𝐸)) ≤ Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗) ↔ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)))) |
561 | 557, 560 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐺 / (1 + 𝐸)) < Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) → 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) |
562 | 561 | ex 413 |
. . . . . . . 8
⊢ (𝜑 → ((𝐺 / (1 + 𝐸)) < Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗) → 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)))) |
563 | 562 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝐺 / (1 + 𝐸)) < Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗) → 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)))) |
564 | 563 | adantlr 712 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑌 ≠ ∅) ∧ 𝑚 ∈ ℕ) → ((𝐺 / (1 + 𝐸)) < Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗) → 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)))) |
565 | 564 | reximdva 3203 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → (∃𝑚 ∈ ℕ (𝐺 / (1 + 𝐸)) < Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗) → ∃𝑚 ∈ ℕ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)))) |
566 | 546, 565 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → ∃𝑚 ∈ ℕ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) |
567 | 193, 195,
566 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑌 = ∅) → ∃𝑚 ∈ ℕ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) |
568 | 192, 567 | pm2.61dan 810 |
. 2
⊢ (𝜑 → ∃𝑚 ∈ ℕ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) |
569 | 43 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) → 𝑋 ∈ Fin) |
570 | 46 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) → 𝑌 ⊆ 𝑋) |
571 | 47 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) → 𝑍 ∈ (𝑋 ∖ 𝑌)) |
572 | 200 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) → 𝐴:𝑊⟶ℝ) |
573 | 203 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) → 𝐵:𝑊⟶ℝ) |
574 | 62 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) → 𝐶:ℕ⟶(ℝ ↑m
𝑊)) |
575 | | eqid 2738 |
. . . . 5
⊢ (𝑦 ∈ 𝑌 ↦ 0) = (𝑦 ∈ 𝑌 ↦ 0) |
576 | | eqid 2738 |
. . . . 5
⊢ (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0))) = (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0))) |
577 | 95 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) → 𝐷:ℕ⟶(ℝ ↑m
𝑊)) |
578 | | eqid 2738 |
. . . . 5
⊢ (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0))) = (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0))) |
579 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (𝐶‘𝑖) = (𝐶‘𝑗)) |
580 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (𝐷‘𝑖) = (𝐷‘𝑗)) |
581 | 579, 580 | oveq12d 7293 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)) = ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))) |
582 | 581 | cbvmptv 5187 |
. . . . . . . 8
⊢ (𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖))) = (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))) |
583 | 582 | fveq2i 6777 |
. . . . . . 7
⊢
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) |
584 | | hoidmvlelem3.r |
. . . . . . 7
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) |
585 | 583, 584 | eqeltrid 2843 |
. . . . . 6
⊢ (𝜑 →
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) |
586 | 585 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) →
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) |
587 | | hoidmvlelem3.h |
. . . . . 6
⊢ 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))))) |
588 | | eleq1w 2821 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑖 → (𝑗 ∈ 𝑌 ↔ 𝑖 ∈ 𝑌)) |
589 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑖 → (𝑐‘𝑗) = (𝑐‘𝑖)) |
590 | 589 | breq1d 5084 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑖 → ((𝑐‘𝑗) ≤ 𝑥 ↔ (𝑐‘𝑖) ≤ 𝑥)) |
591 | 590, 589 | ifbieq1d 4483 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑖 → if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥) = if((𝑐‘𝑖) ≤ 𝑥, (𝑐‘𝑖), 𝑥)) |
592 | 588, 589,
591 | ifbieq12d 4487 |
. . . . . . . . 9
⊢ (𝑗 = 𝑖 → if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥)) = if(𝑖 ∈ 𝑌, (𝑐‘𝑖), if((𝑐‘𝑖) ≤ 𝑥, (𝑐‘𝑖), 𝑥))) |
593 | 592 | cbvmptv 5187 |
. . . . . . . 8
⊢ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))) = (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑐‘𝑖), if((𝑐‘𝑖) ≤ 𝑥, (𝑐‘𝑖), 𝑥))) |
594 | 593 | mpteq2i 5179 |
. . . . . . 7
⊢ (𝑐 ∈ (ℝ
↑m 𝑊)
↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥)))) = (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑐‘𝑖), if((𝑐‘𝑖) ≤ 𝑥, (𝑐‘𝑖), 𝑥)))) |
595 | 594 | mpteq2i 5179 |
. . . . . 6
⊢ (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ
↑m 𝑊)
↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))))) = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑐‘𝑖), if((𝑐‘𝑖) ≤ 𝑥, (𝑐‘𝑖), 𝑥))))) |
596 | 587, 595 | eqtri 2766 |
. . . . 5
⊢ 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑐‘𝑖), if((𝑐‘𝑖) ≤ 𝑥, (𝑐‘𝑖), 𝑥))))) |
597 | 172 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) → 𝐸 ∈
ℝ+) |
598 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑖 → (𝐶‘𝑗) = (𝐶‘𝑖)) |
599 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑖 → (𝐷‘𝑗) = (𝐷‘𝑖)) |
600 | 599 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑖 → ((𝐻‘𝑧)‘(𝐷‘𝑗)) = ((𝐻‘𝑧)‘(𝐷‘𝑖))) |
601 | 598, 600 | oveq12d 7293 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑖 → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))) = ((𝐶‘𝑖)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑖)))) |
602 | 601 | cbvmptv 5187 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))) = (𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑖)))) |
603 | 602 | fveq2i 6777 |
. . . . . . . . 9
⊢
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))) =
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑖))))) |
604 | 603 | oveq2i 7286 |
. . . . . . . 8
⊢ ((1 +
𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))))) = ((1 + 𝐸) ·
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑖)))))) |
605 | 604 | breq2i 5082 |
. . . . . . 7
⊢ ((𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))))) ↔ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑖))))))) |
606 | 605 | rabbii 3408 |
. . . . . 6
⊢ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} = {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑖))))))} |
607 | 337, 606 | eqtri 2766 |
. . . . 5
⊢ 𝑈 = {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑖))))))} |
608 | 285 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) → 𝑆 ∈ 𝑈) |
609 | 344 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) → 𝑆 < (𝐵‘𝑍)) |
610 | | eqid 2738 |
. . . . 5
⊢ (𝑖 ∈ ℕ ↦ (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖))) = (𝑖 ∈ ℕ ↦ (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖))) |
611 | | simp2 1136 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) → 𝑚 ∈ ℕ) |
612 | | id 22 |
. . . . . . . 8
⊢ (𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) → 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) |
613 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑖 → (𝑃‘𝑗) = (𝑃‘𝑖)) |
614 | 613 | cbvsumv 15408 |
. . . . . . . . . 10
⊢
Σ𝑗 ∈
(1...𝑚)(𝑃‘𝑗) = Σ𝑖 ∈ (1...𝑚)(𝑃‘𝑖) |
615 | 614 | oveq2i 7286 |
. . . . . . . . 9
⊢ ((1 +
𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) = ((1 + 𝐸) · Σ𝑖 ∈ (1...𝑚)(𝑃‘𝑖)) |
616 | 615 | a1i 11 |
. . . . . . . 8
⊢ (𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) → ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) = ((1 + 𝐸) · Σ𝑖 ∈ (1...𝑚)(𝑃‘𝑖))) |
617 | 612, 616 | breqtrd 5100 |
. . . . . . 7
⊢ (𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) → 𝐺 ≤ ((1 + 𝐸) · Σ𝑖 ∈ (1...𝑚)(𝑃‘𝑖))) |
618 | 617 | 3ad2ant3 1134 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) → 𝐺 ≤ ((1 + 𝐸) · Σ𝑖 ∈ (1...𝑚)(𝑃‘𝑖))) |
619 | | simpl 483 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑚)) → 𝜑) |
620 | | elfznn 13285 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (1...𝑚) → 𝑖 ∈ ℕ) |
621 | 620 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑚)) → 𝑖 ∈ ℕ) |
622 | | eleq1w 2821 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑖 → (𝑗 ∈ ℕ ↔ 𝑖 ∈ ℕ)) |
623 | | fveq2 6774 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑖 → (𝐽‘𝑗) = (𝐽‘𝑖)) |
624 | | fveq2 6774 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑖 → (𝐾‘𝑗) = (𝐾‘𝑖)) |
625 | 623, 624 | oveq12d 7293 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑖 → ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)) = ((𝐽‘𝑖)(𝐿‘𝑌)(𝐾‘𝑖))) |
626 | 613, 625 | eqeq12d 2754 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑖 → ((𝑃‘𝑗) = ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)) ↔ (𝑃‘𝑖) = ((𝐽‘𝑖)(𝐿‘𝑌)(𝐾‘𝑖)))) |
627 | 622, 626 | imbi12d 345 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑖 → ((𝑗 ∈ ℕ → (𝑃‘𝑗) = ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗))) ↔ (𝑖 ∈ ℕ → (𝑃‘𝑖) = ((𝐽‘𝑖)(𝐿‘𝑌)(𝐾‘𝑖))))) |
628 | 627, 41 | chvarvv 2002 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ ℕ → (𝑃‘𝑖) = ((𝐽‘𝑖)(𝐿‘𝑌)(𝐾‘𝑖))) |
629 | 628 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝑃‘𝑖) = ((𝐽‘𝑖)(𝐿‘𝑌)(𝐾‘𝑖))) |
630 | 622 | anbi2d 629 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑖 → ((𝜑 ∧ 𝑗 ∈ ℕ) ↔ (𝜑 ∧ 𝑖 ∈ ℕ))) |
631 | 598 | fveq1d 6776 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝑖 → ((𝐶‘𝑗)‘𝑍) = ((𝐶‘𝑖)‘𝑍)) |
632 | 599 | fveq1d 6776 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝑖 → ((𝐷‘𝑗)‘𝑍) = ((𝐷‘𝑖)‘𝑍)) |
633 | 631, 632 | oveq12d 7293 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝑖 → (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) = (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))) |
634 | 633 | eleq2d 2824 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑖 → (𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) ↔ 𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)))) |
635 | 598 | reseq1d 5890 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑖 → ((𝐶‘𝑗) ↾ 𝑌) = ((𝐶‘𝑖) ↾ 𝑌)) |
636 | 634, 635 | ifbieq1d 4483 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑖 → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), 𝐹)) |
637 | 623, 636 | eqeq12d 2754 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑖 → ((𝐽‘𝑗) = if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) ↔ (𝐽‘𝑖) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), 𝐹))) |
638 | 630, 637 | imbi12d 345 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑖 → (((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐽‘𝑗) = if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹)) ↔ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐽‘𝑖) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), 𝐹)))) |
639 | 638, 149 | chvarvv 2002 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐽‘𝑖) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), 𝐹)) |
640 | 599 | reseq1d 5890 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑖 → ((𝐷‘𝑗) ↾ 𝑌) = ((𝐷‘𝑖) ↾ 𝑌)) |
641 | 634, 640 | ifbieq1d 4483 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑖 → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), 𝐹)) |
642 | 624, 641 | eqeq12d 2754 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑖 → ((𝐾‘𝑗) = if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹) ↔ (𝐾‘𝑖) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), 𝐹))) |
643 | 630, 642 | imbi12d 345 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑖 → (((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐾‘𝑗) = if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹)) ↔ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐾‘𝑖) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), 𝐹)))) |
644 | 643, 440 | chvarvv 2002 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐾‘𝑖) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), 𝐹)) |
645 | 639, 644 | oveq12d 7293 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝐽‘𝑖)(𝐿‘𝑌)(𝐾‘𝑖)) = (if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), 𝐹)(𝐿‘𝑌)if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), 𝐹))) |
646 | 629, 645 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝑃‘𝑖) = (if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), 𝐹)(𝐿‘𝑌)if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), 𝐹))) |
647 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ) |
648 | | ovexd 7310 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)) ∈ V) |
649 | 610 | fvmpt2 6886 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ ℕ ∧ (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)) ∈ V) → ((𝑖 ∈ ℕ ↦ (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)))‘𝑖) = (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖))) |
650 | 647, 648,
649 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)))‘𝑖) = (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖))) |
651 | | fvex 6787 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐶‘𝑖) ∈ V |
652 | 651 | resex 5939 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐶‘𝑖) ↾ 𝑌) ∈ V |
653 | 652 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝐶‘𝑖) ↾ 𝑌) ∈ V) |
654 | 80, 143 | eqeltrrid 2844 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ 0) ∈ V) |
655 | 653, 654 | ifcld 4505 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)) ∈ V) |
656 | 655 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)) ∈ V) |
657 | 576 | fvmpt2 6886 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ ℕ ∧ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)) ∈ V) → ((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0))) |
658 | 647, 656,
657 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0))) |
659 | 80 | eqcomi 2747 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ 𝑌 ↦ 0) = 𝐹 |
660 | | ifeq2 4464 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ 𝑌 ↦ 0) = 𝐹 → if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), 𝐹)) |
661 | 659, 660 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), 𝐹) |
662 | 661 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), 𝐹)) |
663 | 658, 662 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), 𝐹)) |
664 | | fvex 6787 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐷‘𝑖) ∈ V |
665 | 664 | resex 5939 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐷‘𝑖) ↾ 𝑌) ∈ V |
666 | 665 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝐷‘𝑖) ↾ 𝑌) ∈ V) |
667 | 666, 654 | ifcld 4505 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)) ∈ V) |
668 | 667 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)) ∈ V) |
669 | 578 | fvmpt2 6886 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ ℕ ∧ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)) ∈ V) → ((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0))) |
670 | 647, 668,
669 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0))) |
671 | | biid 260 |
. . . . . . . . . . . . . . . 16
⊢ (𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)) ↔ 𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))) |
672 | 671, 659 | ifbieq2i 4484 |
. . . . . . . . . . . . . . 15
⊢ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), 𝐹) |
673 | 672 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), 𝐹)) |
674 | 670, 673 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), 𝐹)) |
675 | 663, 674 | oveq12d 7293 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)) = (if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), 𝐹)(𝐿‘𝑌)if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), 𝐹))) |
676 | 650, 675 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)))‘𝑖) = (if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), 𝐹)(𝐿‘𝑌)if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), 𝐹))) |
677 | 646, 676 | eqtr4d 2781 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝑃‘𝑖) = ((𝑖 ∈ ℕ ↦ (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)))‘𝑖)) |
678 | 619, 621,
677 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑚)) → (𝑃‘𝑖) = ((𝑖 ∈ ℕ ↦ (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)))‘𝑖)) |
679 | 678 | 3ad2antl1 1184 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) ∧ 𝑖 ∈ (1...𝑚)) → (𝑃‘𝑖) = ((𝑖 ∈ ℕ ↦ (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)))‘𝑖)) |
680 | 679 | sumeq2dv 15415 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) → Σ𝑖 ∈ (1...𝑚)(𝑃‘𝑖) = Σ𝑖 ∈ (1...𝑚)((𝑖 ∈ ℕ ↦ (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)))‘𝑖)) |
681 | 680 | oveq2d 7291 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) → ((1 + 𝐸) · Σ𝑖 ∈ (1...𝑚)(𝑃‘𝑖)) = ((1 + 𝐸) · Σ𝑖 ∈ (1...𝑚)((𝑖 ∈ ℕ ↦ (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)))‘𝑖))) |
682 | 618, 681 | breqtrd 5100 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) → 𝐺 ≤ ((1 + 𝐸) · Σ𝑖 ∈ (1...𝑚)((𝑖 ∈ ℕ ↦ (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑖)))‘𝑖))) |
683 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑗 = ℎ → (𝐷‘𝑗) = (𝐷‘ℎ)) |
684 | 683 | fveq1d 6776 |
. . . . . . 7
⊢ (𝑗 = ℎ → ((𝐷‘𝑗)‘𝑍) = ((𝐷‘ℎ)‘𝑍)) |
685 | 684 | cbvmptv 5187 |
. . . . . 6
⊢ (𝑗 ∈ {𝑖 ∈ (1...𝑚) ∣ 𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))} ↦ ((𝐷‘𝑗)‘𝑍)) = (ℎ ∈ {𝑖 ∈ (1...𝑚) ∣ 𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))} ↦ ((𝐷‘ℎ)‘𝑍)) |
686 | 685 | rneqi 5846 |
. . . . 5
⊢ ran
(𝑗 ∈ {𝑖 ∈ (1...𝑚) ∣ 𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))} ↦ ((𝐷‘𝑗)‘𝑍)) = ran (ℎ ∈ {𝑖 ∈ (1...𝑚) ∣ 𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))} ↦ ((𝐷‘ℎ)‘𝑍)) |
687 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (ℎ = 𝑖 → (𝐶‘ℎ) = (𝐶‘𝑖)) |
688 | 687 | fveq1d 6776 |
. . . . . . . . . . 11
⊢ (ℎ = 𝑖 → ((𝐶‘ℎ)‘𝑍) = ((𝐶‘𝑖)‘𝑍)) |
689 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (ℎ = 𝑖 → (𝐷‘ℎ) = (𝐷‘𝑖)) |
690 | 689 | fveq1d 6776 |
. . . . . . . . . . 11
⊢ (ℎ = 𝑖 → ((𝐷‘ℎ)‘𝑍) = ((𝐷‘𝑖)‘𝑍)) |
691 | 688, 690 | oveq12d 7293 |
. . . . . . . . . 10
⊢ (ℎ = 𝑖 → (((𝐶‘ℎ)‘𝑍)[,)((𝐷‘ℎ)‘𝑍)) = (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))) |
692 | 691 | eleq2d 2824 |
. . . . . . . . 9
⊢ (ℎ = 𝑖 → (𝑆 ∈ (((𝐶‘ℎ)‘𝑍)[,)((𝐷‘ℎ)‘𝑍)) ↔ 𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)))) |
693 | 692 | cbvrabv 3426 |
. . . . . . . 8
⊢ {ℎ ∈ (1...𝑚) ∣ 𝑆 ∈ (((𝐶‘ℎ)‘𝑍)[,)((𝐷‘ℎ)‘𝑍))} = {𝑖 ∈ (1...𝑚) ∣ 𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))} |
694 | 693 | mpteq1i 5170 |
. . . . . . 7
⊢ (𝑗 ∈ {ℎ ∈ (1...𝑚) ∣ 𝑆 ∈ (((𝐶‘ℎ)‘𝑍)[,)((𝐷‘ℎ)‘𝑍))} ↦ ((𝐷‘𝑗)‘𝑍)) = (𝑗 ∈ {𝑖 ∈ (1...𝑚) ∣ 𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))} ↦ ((𝐷‘𝑗)‘𝑍)) |
695 | 694 | rneqi 5846 |
. . . . . 6
⊢ ran
(𝑗 ∈ {ℎ ∈ (1...𝑚) ∣ 𝑆 ∈ (((𝐶‘ℎ)‘𝑍)[,)((𝐷‘ℎ)‘𝑍))} ↦ ((𝐷‘𝑗)‘𝑍)) = ran (𝑗 ∈ {𝑖 ∈ (1...𝑚) ∣ 𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))} ↦ ((𝐷‘𝑗)‘𝑍)) |
696 | 695 | uneq2i 4094 |
. . . . 5
⊢ ({(𝐵‘𝑍)} ∪ ran (𝑗 ∈ {ℎ ∈ (1...𝑚) ∣ 𝑆 ∈ (((𝐶‘ℎ)‘𝑍)[,)((𝐷‘ℎ)‘𝑍))} ↦ ((𝐷‘𝑗)‘𝑍))) = ({(𝐵‘𝑍)} ∪ ran (𝑗 ∈ {𝑖 ∈ (1...𝑚) ∣ 𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))} ↦ ((𝐷‘𝑗)‘𝑍))) |
697 | | eqid 2738 |
. . . . 5
⊢
inf(({(𝐵‘𝑍)} ∪ ran (𝑗 ∈ {ℎ ∈ (1...𝑚) ∣ 𝑆 ∈ (((𝐶‘ℎ)‘𝑍)[,)((𝐷‘ℎ)‘𝑍))} ↦ ((𝐷‘𝑗)‘𝑍))), ℝ, < ) = inf(({(𝐵‘𝑍)} ∪ ran (𝑗 ∈ {ℎ ∈ (1...𝑚) ∣ 𝑆 ∈ (((𝐶‘ℎ)‘𝑍)[,)((𝐷‘ℎ)‘𝑍))} ↦ ((𝐷‘𝑗)‘𝑍))), ℝ, < ) |
698 | 18, 569, 570, 571, 44, 572, 573, 574, 575, 576, 577, 578, 586, 596, 5, 597, 607, 608, 609, 610, 611, 682, 686, 696, 697 | hoidmvlelem2 44134 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗))) → ∃𝑢 ∈ 𝑈 𝑆 < 𝑢) |
699 | 698 | 3exp 1118 |
. . 3
⊢ (𝜑 → (𝑚 ∈ ℕ → (𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) → ∃𝑢 ∈ 𝑈 𝑆 < 𝑢))) |
700 | 699 | rexlimdv 3212 |
. 2
⊢ (𝜑 → (∃𝑚 ∈ ℕ 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑚)(𝑃‘𝑗)) → ∃𝑢 ∈ 𝑈 𝑆 < 𝑢)) |
701 | 568, 700 | mpd 15 |
1
⊢ (𝜑 → ∃𝑢 ∈ 𝑈 𝑆 < 𝑢) |