| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imp41 | Structured version Visualization version GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| imp41 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | imp 406 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
| 3 | 2 | imp31 417 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 3anassrs 1361 ad5ant125 1368 ad5ant2345 1372 peano5 7823 oelim 8449 lemul12a 11979 uzwo 12809 elfznelfzo 13673 injresinj 13691 swrdswrd 14612 2cshwcshw 14732 dvdsprmpweqle 16798 catidd 17586 grpinveu 18887 2ndcctbss 23370 rusgrnumwwlks 29955 erclwwlktr 30002 wwlksext2clwwlk 30037 erclwwlkntr 30051 grpoinveu 30499 spansncvi 31632 sumdmdii 32395 relowlpssretop 37408 matunitlindflem1 37666 unichnidl 38081 linepsubN 39861 pmapsub 39877 cdlemkid4 41043 hbtlem2 43227 2reu8i 47223 ply1mulgsumlem2 48498 |
| Copyright terms: Public domain | W3C validator |