Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imp41 | Structured version Visualization version GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
imp41 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | imp 410 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
3 | 2 | imp31 421 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: 3anassrs 1362 ad5ant125 1368 ad5ant2345 1372 peano5 7671 peano5OLD 7672 oelim 8261 lemul12a 11690 uzwo 12507 elfznelfzo 13347 injresinj 13363 swrdswrd 14270 2cshwcshw 14390 dvdsprmpweqle 16439 catidd 17183 grpinveu 18402 2ndcctbss 22352 rusgrnumwwlks 28058 erclwwlktr 28105 wwlksext2clwwlk 28140 erclwwlkntr 28154 grpoinveu 28600 spansncvi 29733 sumdmdii 30496 relowlpssretop 35272 matunitlindflem1 35510 unichnidl 35926 linepsubN 37503 pmapsub 37519 cdlemkid4 38685 hbtlem2 40652 2reu8i 44277 ply1mulgsumlem2 45401 |
Copyright terms: Public domain | W3C validator |