| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imp41 | Structured version Visualization version GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| imp41 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | imp 406 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
| 3 | 2 | imp31 417 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 3anassrs 1361 ad5ant125 1368 ad5ant2345 1372 peano5 7869 oelim 8498 lemul12a 12040 uzwo 12870 elfznelfzo 13733 injresinj 13749 swrdswrd 14670 2cshwcshw 14791 dvdsprmpweqle 16857 catidd 17641 grpinveu 18906 2ndcctbss 23342 rusgrnumwwlks 29904 erclwwlktr 29951 wwlksext2clwwlk 29986 erclwwlkntr 30000 grpoinveu 30448 spansncvi 31581 sumdmdii 32344 relowlpssretop 37352 matunitlindflem1 37610 unichnidl 38025 linepsubN 39746 pmapsub 39762 cdlemkid4 40928 hbtlem2 43113 2reu8i 47114 ply1mulgsumlem2 48376 |
| Copyright terms: Public domain | W3C validator |