| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imp41 | Structured version Visualization version GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| imp41 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | imp 406 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
| 3 | 2 | imp31 417 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 3anassrs 1361 ad5ant125 1368 ad5ant2345 1372 peano5 7826 oelim 8452 lemul12a 11982 uzwo 12812 elfznelfzo 13675 injresinj 13691 swrdswrd 14611 2cshwcshw 14732 dvdsprmpweqle 16798 catidd 17586 grpinveu 18853 2ndcctbss 23340 rusgrnumwwlks 29919 erclwwlktr 29966 wwlksext2clwwlk 30001 erclwwlkntr 30015 grpoinveu 30463 spansncvi 31596 sumdmdii 32359 relowlpssretop 37342 matunitlindflem1 37600 unichnidl 38015 linepsubN 39735 pmapsub 39751 cdlemkid4 40917 hbtlem2 43101 2reu8i 47101 ply1mulgsumlem2 48376 |
| Copyright terms: Public domain | W3C validator |