MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp41 Structured version   Visualization version   GIF version

Theorem imp41 425
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
imp41 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)

Proof of Theorem imp41
StepHypRef Expression
1 imp4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21imp 406 . 2 ((𝜑𝜓) → (𝜒 → (𝜃𝜏)))
32imp31 417 1 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  3anassrs  1361  ad5ant125  1368  ad5ant2345  1372  peano5  7826  oelim  8452  lemul12a  11982  uzwo  12812  elfznelfzo  13675  injresinj  13691  swrdswrd  14611  2cshwcshw  14732  dvdsprmpweqle  16798  catidd  17586  grpinveu  18853  2ndcctbss  23340  rusgrnumwwlks  29919  erclwwlktr  29966  wwlksext2clwwlk  30001  erclwwlkntr  30015  grpoinveu  30463  spansncvi  31596  sumdmdii  32359  relowlpssretop  37342  matunitlindflem1  37600  unichnidl  38015  linepsubN  39735  pmapsub  39751  cdlemkid4  40917  hbtlem2  43101  2reu8i  47101  ply1mulgsumlem2  48376
  Copyright terms: Public domain W3C validator