Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imp41 | Structured version Visualization version GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
imp41 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | imp 407 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
3 | 2 | imp31 418 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: 3anassrs 1359 ad5ant125 1365 ad5ant2345 1369 peano5 7787 peano5OLD 7788 oelim 8414 lemul12a 11913 uzwo 12731 elfznelfzo 13572 injresinj 13588 swrdswrd 14497 2cshwcshw 14617 dvdsprmpweqle 16664 catidd 17466 grpinveu 18690 2ndcctbss 22689 rusgrnumwwlks 28475 erclwwlktr 28522 wwlksext2clwwlk 28557 erclwwlkntr 28571 grpoinveu 29017 spansncvi 30150 sumdmdii 30913 relowlpssretop 35607 matunitlindflem1 35845 unichnidl 36261 linepsubN 37987 pmapsub 38003 cdlemkid4 39169 hbtlem2 41166 2reu8i 44870 ply1mulgsumlem2 45993 |
Copyright terms: Public domain | W3C validator |