| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imp41 | Structured version Visualization version GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| imp41 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | imp 406 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
| 3 | 2 | imp31 417 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 3anassrs 1361 ad5ant125 1368 ad5ant2345 1372 peano5 7849 oelim 8475 lemul12a 12016 uzwo 12846 elfznelfzo 13709 injresinj 13725 swrdswrd 14646 2cshwcshw 14767 dvdsprmpweqle 16833 catidd 17621 grpinveu 18888 2ndcctbss 23375 rusgrnumwwlks 29954 erclwwlktr 30001 wwlksext2clwwlk 30036 erclwwlkntr 30050 grpoinveu 30498 spansncvi 31631 sumdmdii 32394 relowlpssretop 37345 matunitlindflem1 37603 unichnidl 38018 linepsubN 39739 pmapsub 39755 cdlemkid4 40921 hbtlem2 43106 2reu8i 47107 ply1mulgsumlem2 48369 |
| Copyright terms: Public domain | W3C validator |