Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imp41 | Structured version Visualization version GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
imp41 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | imp 406 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
3 | 2 | imp31 417 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: 3anassrs 1358 ad5ant125 1364 ad5ant2345 1368 peano5 7727 peano5OLD 7728 oelim 8340 lemul12a 11816 uzwo 12633 elfznelfzo 13473 injresinj 13489 swrdswrd 14399 2cshwcshw 14519 dvdsprmpweqle 16568 catidd 17370 grpinveu 18595 2ndcctbss 22587 rusgrnumwwlks 28318 erclwwlktr 28365 wwlksext2clwwlk 28400 erclwwlkntr 28414 grpoinveu 28860 spansncvi 29993 sumdmdii 30756 relowlpssretop 35514 matunitlindflem1 35752 unichnidl 36168 linepsubN 37745 pmapsub 37761 cdlemkid4 38927 hbtlem2 40929 2reu8i 44556 ply1mulgsumlem2 45680 |
Copyright terms: Public domain | W3C validator |