MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp41 Structured version   Visualization version   GIF version

Theorem imp41 425
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
imp41 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)

Proof of Theorem imp41
StepHypRef Expression
1 imp4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21imp 406 . 2 ((𝜑𝜓) → (𝜒 → (𝜃𝜏)))
32imp31 417 1 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  3anassrs  1360  ad5ant125  1366  ad5ant2345  1370  peano5  7932  peano5OLD  7933  oelim  8590  lemul12a  12152  uzwo  12976  elfznelfzo  13822  injresinj  13838  swrdswrd  14753  2cshwcshw  14874  dvdsprmpweqle  16933  catidd  17738  grpinveu  19014  2ndcctbss  23484  rusgrnumwwlks  30007  erclwwlktr  30054  wwlksext2clwwlk  30089  erclwwlkntr  30103  grpoinveu  30551  spansncvi  31684  sumdmdii  32447  relowlpssretop  37330  matunitlindflem1  37576  unichnidl  37991  linepsubN  39709  pmapsub  39725  cdlemkid4  40891  hbtlem2  43081  2reu8i  47028  ply1mulgsumlem2  48116
  Copyright terms: Public domain W3C validator