Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imp41 | Structured version Visualization version GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
imp41 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | imp 408 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
3 | 2 | imp31 419 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: 3anassrs 1360 ad5ant125 1366 ad5ant2345 1370 peano5 7772 peano5OLD 7773 oelim 8395 lemul12a 11879 uzwo 12697 elfznelfzo 13538 injresinj 13554 swrdswrd 14463 2cshwcshw 14583 dvdsprmpweqle 16632 catidd 17434 grpinveu 18659 2ndcctbss 22651 rusgrnumwwlks 28384 erclwwlktr 28431 wwlksext2clwwlk 28466 erclwwlkntr 28480 grpoinveu 28926 spansncvi 30059 sumdmdii 30822 relowlpssretop 35579 matunitlindflem1 35817 unichnidl 36233 linepsubN 37808 pmapsub 37824 cdlemkid4 38990 hbtlem2 40987 2reu8i 44663 ply1mulgsumlem2 45786 |
Copyright terms: Public domain | W3C validator |