![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imp41 | Structured version Visualization version GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
imp41 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | imp 406 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
3 | 2 | imp31 417 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: 3anassrs 1360 ad5ant125 1366 ad5ant2345 1370 peano5 7932 peano5OLD 7933 oelim 8590 lemul12a 12152 uzwo 12976 elfznelfzo 13822 injresinj 13838 swrdswrd 14753 2cshwcshw 14874 dvdsprmpweqle 16933 catidd 17738 grpinveu 19014 2ndcctbss 23484 rusgrnumwwlks 30007 erclwwlktr 30054 wwlksext2clwwlk 30089 erclwwlkntr 30103 grpoinveu 30551 spansncvi 31684 sumdmdii 32447 relowlpssretop 37330 matunitlindflem1 37576 unichnidl 37991 linepsubN 39709 pmapsub 39725 cdlemkid4 40891 hbtlem2 43081 2reu8i 47028 ply1mulgsumlem2 48116 |
Copyright terms: Public domain | W3C validator |