MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp41 Structured version   Visualization version   GIF version

Theorem imp41 425
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
imp41 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)

Proof of Theorem imp41
StepHypRef Expression
1 imp4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21imp 406 . 2 ((𝜑𝜓) → (𝜒 → (𝜃𝜏)))
32imp31 417 1 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  3anassrs  1361  ad5ant125  1368  ad5ant2345  1372  peano5  7849  oelim  8475  lemul12a  12016  uzwo  12846  elfznelfzo  13709  injresinj  13725  swrdswrd  14646  2cshwcshw  14767  dvdsprmpweqle  16833  catidd  17621  grpinveu  18888  2ndcctbss  23375  rusgrnumwwlks  29954  erclwwlktr  30001  wwlksext2clwwlk  30036  erclwwlkntr  30050  grpoinveu  30498  spansncvi  31631  sumdmdii  32394  relowlpssretop  37345  matunitlindflem1  37603  unichnidl  38018  linepsubN  39739  pmapsub  39755  cdlemkid4  40921  hbtlem2  43106  2reu8i  47107  ply1mulgsumlem2  48369
  Copyright terms: Public domain W3C validator