MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp41 Structured version   Visualization version   GIF version

Theorem imp41 425
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
imp41 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)

Proof of Theorem imp41
StepHypRef Expression
1 imp4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21imp 406 . 2 ((𝜑𝜓) → (𝜒 → (𝜃𝜏)))
32imp31 417 1 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  3anassrs  1361  ad5ant125  1368  ad5ant2345  1372  peano5  7872  oelim  8501  lemul12a  12047  uzwo  12877  elfznelfzo  13740  injresinj  13756  swrdswrd  14677  2cshwcshw  14798  dvdsprmpweqle  16864  catidd  17648  grpinveu  18913  2ndcctbss  23349  rusgrnumwwlks  29911  erclwwlktr  29958  wwlksext2clwwlk  29993  erclwwlkntr  30007  grpoinveu  30455  spansncvi  31588  sumdmdii  32351  relowlpssretop  37359  matunitlindflem1  37617  unichnidl  38032  linepsubN  39753  pmapsub  39769  cdlemkid4  40935  hbtlem2  43120  2reu8i  47118  ply1mulgsumlem2  48380
  Copyright terms: Public domain W3C validator