| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imp41 | Structured version Visualization version GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| imp41 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | imp 406 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
| 3 | 2 | imp31 417 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 3anassrs 1361 ad5ant125 1368 ad5ant2345 1372 peano5 7872 oelim 8501 lemul12a 12047 uzwo 12877 elfznelfzo 13740 injresinj 13756 swrdswrd 14677 2cshwcshw 14798 dvdsprmpweqle 16864 catidd 17648 grpinveu 18913 2ndcctbss 23349 rusgrnumwwlks 29911 erclwwlktr 29958 wwlksext2clwwlk 29993 erclwwlkntr 30007 grpoinveu 30455 spansncvi 31588 sumdmdii 32351 relowlpssretop 37359 matunitlindflem1 37617 unichnidl 38032 linepsubN 39753 pmapsub 39769 cdlemkid4 40935 hbtlem2 43120 2reu8i 47118 ply1mulgsumlem2 48380 |
| Copyright terms: Public domain | W3C validator |