|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > imp41 | Structured version Visualization version GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) | 
| Ref | Expression | 
|---|---|
| imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | 
| Ref | Expression | 
|---|---|
| imp41 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | imp 406 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) | 
| 3 | 2 | imp31 417 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: 3anassrs 1361 ad5ant125 1368 ad5ant2345 1372 peano5 7915 oelim 8572 lemul12a 12125 uzwo 12953 elfznelfzo 13811 injresinj 13827 swrdswrd 14743 2cshwcshw 14864 dvdsprmpweqle 16924 catidd 17723 grpinveu 18992 2ndcctbss 23463 rusgrnumwwlks 29994 erclwwlktr 30041 wwlksext2clwwlk 30076 erclwwlkntr 30090 grpoinveu 30538 spansncvi 31671 sumdmdii 32434 relowlpssretop 37365 matunitlindflem1 37623 unichnidl 38038 linepsubN 39754 pmapsub 39770 cdlemkid4 40936 hbtlem2 43136 2reu8i 47125 ply1mulgsumlem2 48304 | 
| Copyright terms: Public domain | W3C validator |