| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imp41 | Structured version Visualization version GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| imp41 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | imp 406 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
| 3 | 2 | imp31 417 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 3anassrs 1361 ad5ant125 1368 ad5ant2345 1372 peano5 7894 oelim 8551 lemul12a 12104 uzwo 12932 elfznelfzo 13793 injresinj 13809 swrdswrd 14728 2cshwcshw 14849 dvdsprmpweqle 16911 catidd 17697 grpinveu 18962 2ndcctbss 23398 rusgrnumwwlks 29961 erclwwlktr 30008 wwlksext2clwwlk 30043 erclwwlkntr 30057 grpoinveu 30505 spansncvi 31638 sumdmdii 32401 relowlpssretop 37387 matunitlindflem1 37645 unichnidl 38060 linepsubN 39776 pmapsub 39792 cdlemkid4 40958 hbtlem2 43115 2reu8i 47109 ply1mulgsumlem2 48330 |
| Copyright terms: Public domain | W3C validator |