Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supxrge Structured version   Visualization version   GIF version

Theorem supxrge 45376
Description: If an extended real number can be approximated from below by members of a set, then it is less than or equal to the supremum of the set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
supxrge.xph 𝑥𝜑
supxrge.a (𝜑𝐴 ⊆ ℝ*)
supxrge.b (𝜑𝐵 ∈ ℝ*)
supxrge.y ((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 𝑥))
Assertion
Ref Expression
supxrge (𝜑𝐵 ≤ sup(𝐴, ℝ*, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem supxrge
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 supxrge.b . . . . 5 (𝜑𝐵 ∈ ℝ*)
2 pnfge 13026 . . . . 5 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
31, 2syl 17 . . . 4 (𝜑𝐵 ≤ +∞)
43adantr 480 . . 3 ((𝜑 ∧ +∞ ∈ 𝐴) → 𝐵 ≤ +∞)
5 supxrge.a . . . . . 6 (𝜑𝐴 ⊆ ℝ*)
65adantr 480 . . . . 5 ((𝜑 ∧ +∞ ∈ 𝐴) → 𝐴 ⊆ ℝ*)
7 simpr 484 . . . . 5 ((𝜑 ∧ +∞ ∈ 𝐴) → +∞ ∈ 𝐴)
8 supxrpnf 13214 . . . . 5 ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) = +∞)
96, 7, 8syl2anc 584 . . . 4 ((𝜑 ∧ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) = +∞)
109eqcomd 2737 . . 3 ((𝜑 ∧ +∞ ∈ 𝐴) → +∞ = sup(𝐴, ℝ*, < ))
114, 10breqtrd 5117 . 2 ((𝜑 ∧ +∞ ∈ 𝐴) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
12 simpr 484 . . . . 5 ((𝜑𝐵 = -∞) → 𝐵 = -∞)
13 supxrcl 13211 . . . . . . . 8 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
145, 13syl 17 . . . . . . 7 (𝜑 → sup(𝐴, ℝ*, < ) ∈ ℝ*)
15 mnfle 13031 . . . . . . 7 (sup(𝐴, ℝ*, < ) ∈ ℝ* → -∞ ≤ sup(𝐴, ℝ*, < ))
1614, 15syl 17 . . . . . 6 (𝜑 → -∞ ≤ sup(𝐴, ℝ*, < ))
1716adantr 480 . . . . 5 ((𝜑𝐵 = -∞) → -∞ ≤ sup(𝐴, ℝ*, < ))
1812, 17eqbrtrd 5113 . . . 4 ((𝜑𝐵 = -∞) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
1918adantlr 715 . . 3 (((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 = -∞) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
20 simpl 482 . . . 4 (((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ ¬ 𝐵 = -∞) → (𝜑 ∧ ¬ +∞ ∈ 𝐴))
21 neqne 2936 . . . . 5 𝐵 = -∞ → 𝐵 ≠ -∞)
2221adantl 481 . . . 4 (((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ ¬ 𝐵 = -∞) → 𝐵 ≠ -∞)
23 nfv 1915 . . . . 5 𝑤((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞)
245adantr 480 . . . . . 6 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → 𝐴 ⊆ ℝ*)
2524adantr 480 . . . . 5 (((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) → 𝐴 ⊆ ℝ*)
261adantr 480 . . . . . 6 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → 𝐵 ∈ ℝ*)
2726adantr 480 . . . . 5 (((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) → 𝐵 ∈ ℝ*)
28 simpl 482 . . . . . . . . 9 ((𝜑𝑤 ∈ ℝ+) → 𝜑)
29 rphalfcl 12916 . . . . . . . . . 10 (𝑤 ∈ ℝ+ → (𝑤 / 2) ∈ ℝ+)
3029adantl 481 . . . . . . . . 9 ((𝜑𝑤 ∈ ℝ+) → (𝑤 / 2) ∈ ℝ+)
31 ovex 7379 . . . . . . . . . 10 (𝑤 / 2) ∈ V
32 nfcv 2894 . . . . . . . . . . 11 𝑥(𝑤 / 2)
33 supxrge.xph . . . . . . . . . . . . 13 𝑥𝜑
34 nfv 1915 . . . . . . . . . . . . 13 𝑥(𝑤 / 2) ∈ ℝ+
3533, 34nfan 1900 . . . . . . . . . . . 12 𝑥(𝜑 ∧ (𝑤 / 2) ∈ ℝ+)
36 nfv 1915 . . . . . . . . . . . 12 𝑥𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))
3735, 36nfim 1897 . . . . . . . . . . 11 𝑥((𝜑 ∧ (𝑤 / 2) ∈ ℝ+) → ∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2)))
38 eleq1 2819 . . . . . . . . . . . . 13 (𝑥 = (𝑤 / 2) → (𝑥 ∈ ℝ+ ↔ (𝑤 / 2) ∈ ℝ+))
3938anbi2d 630 . . . . . . . . . . . 12 (𝑥 = (𝑤 / 2) → ((𝜑𝑥 ∈ ℝ+) ↔ (𝜑 ∧ (𝑤 / 2) ∈ ℝ+)))
40 oveq2 7354 . . . . . . . . . . . . . 14 (𝑥 = (𝑤 / 2) → (𝑦 +𝑒 𝑥) = (𝑦 +𝑒 (𝑤 / 2)))
4140breq2d 5103 . . . . . . . . . . . . 13 (𝑥 = (𝑤 / 2) → (𝐵 ≤ (𝑦 +𝑒 𝑥) ↔ 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))))
4241rexbidv 3156 . . . . . . . . . . . 12 (𝑥 = (𝑤 / 2) → (∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 𝑥) ↔ ∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))))
4339, 42imbi12d 344 . . . . . . . . . . 11 (𝑥 = (𝑤 / 2) → (((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 𝑥)) ↔ ((𝜑 ∧ (𝑤 / 2) ∈ ℝ+) → ∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2)))))
44 supxrge.y . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 𝑥))
4532, 37, 43, 44vtoclgf 3524 . . . . . . . . . 10 ((𝑤 / 2) ∈ V → ((𝜑 ∧ (𝑤 / 2) ∈ ℝ+) → ∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))))
4631, 45ax-mp 5 . . . . . . . . 9 ((𝜑 ∧ (𝑤 / 2) ∈ ℝ+) → ∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2)))
4728, 30, 46syl2anc 584 . . . . . . . 8 ((𝜑𝑤 ∈ ℝ+) → ∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2)))
4847adantlr 715 . . . . . . 7 (((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝑤 ∈ ℝ+) → ∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2)))
4948adantlr 715 . . . . . 6 ((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) → ∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2)))
50 nfv 1915 . . . . . . 7 𝑦(((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+)
51 neneq 2934 . . . . . . . . . . . . . . . 16 (𝐵 ≠ -∞ → ¬ 𝐵 = -∞)
5251adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝐵 ≠ -∞) → ¬ 𝐵 = -∞)
531adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐵 ≠ -∞) → 𝐵 ∈ ℝ*)
54 ngtmnft 13062 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ* → (𝐵 = -∞ ↔ ¬ -∞ < 𝐵))
5553, 54syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝐵 ≠ -∞) → (𝐵 = -∞ ↔ ¬ -∞ < 𝐵))
5652, 55mtbid 324 . . . . . . . . . . . . . 14 ((𝜑𝐵 ≠ -∞) → ¬ ¬ -∞ < 𝐵)
5756notnotrd 133 . . . . . . . . . . . . 13 ((𝜑𝐵 ≠ -∞) → -∞ < 𝐵)
5857ad4ant13 751 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) → -∞ < 𝐵)
59583ad2ant1 1133 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → -∞ < 𝐵)
6027adantr 480 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) → 𝐵 ∈ ℝ*)
61603ad2ant1 1133 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → 𝐵 ∈ ℝ*)
6261adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) ∧ ¬ -∞ < 𝑦) → 𝐵 ∈ ℝ*)
63 mnfxr 11166 . . . . . . . . . . . . . . . . . . . 20 -∞ ∈ ℝ*
6463a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) ∧ ¬ -∞ < 𝑦) → -∞ ∈ ℝ*)
65 simpl3 1194 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) ∧ ¬ -∞ < 𝑦) → 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2)))
66 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → ¬ -∞ < 𝑦)
675sselda 3934 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑦𝐴) → 𝑦 ∈ ℝ*)
6867adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 𝑦 ∈ ℝ*)
69 ngtmnft 13062 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ ℝ* → (𝑦 = -∞ ↔ ¬ -∞ < 𝑦))
7068, 69syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (𝑦 = -∞ ↔ ¬ -∞ < 𝑦))
7166, 70mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 𝑦 = -∞)
7271oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (𝑦 +𝑒 (𝑤 / 2)) = (-∞ +𝑒 (𝑤 / 2)))
7372adantllr 719 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (𝑦 +𝑒 (𝑤 / 2)) = (-∞ +𝑒 (𝑤 / 2)))
7429rpxrd 12932 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 ∈ ℝ+ → (𝑤 / 2) ∈ ℝ*)
7529rpred 12931 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 ∈ ℝ+ → (𝑤 / 2) ∈ ℝ)
76 renepnf 11157 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑤 / 2) ∈ ℝ → (𝑤 / 2) ≠ +∞)
7775, 76syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 ∈ ℝ+ → (𝑤 / 2) ≠ +∞)
78 xaddmnf2 13125 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑤 / 2) ∈ ℝ* ∧ (𝑤 / 2) ≠ +∞) → (-∞ +𝑒 (𝑤 / 2)) = -∞)
7974, 77, 78syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 ∈ ℝ+ → (-∞ +𝑒 (𝑤 / 2)) = -∞)
8079adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑤 ∈ ℝ+) → (-∞ +𝑒 (𝑤 / 2)) = -∞)
8180ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (-∞ +𝑒 (𝑤 / 2)) = -∞)
8273, 81eqtrd 2766 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (𝑦 +𝑒 (𝑤 / 2)) = -∞)
8382adantl3r 750 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (𝑦 +𝑒 (𝑤 / 2)) = -∞)
8483adantl3r 750 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (𝑦 +𝑒 (𝑤 / 2)) = -∞)
85843adantl3 1169 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) ∧ ¬ -∞ < 𝑦) → (𝑦 +𝑒 (𝑤 / 2)) = -∞)
8665, 85breqtrd 5117 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) ∧ ¬ -∞ < 𝑦) → 𝐵 ≤ -∞)
87 mnfle 13031 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐵 ∈ ℝ* → -∞ ≤ 𝐵)
881, 87syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → -∞ ≤ 𝐵)
8988adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → -∞ ≤ 𝐵)
9089ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ ¬ -∞ < 𝑦) → -∞ ≤ 𝐵)
91903ad2antl1 1186 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) ∧ ¬ -∞ < 𝑦) → -∞ ≤ 𝐵)
9262, 64, 86, 91xrletrid 13051 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) ∧ ¬ -∞ < 𝑦) → 𝐵 = -∞)
93 simpllr 775 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ ¬ -∞ < 𝑦) → 𝐵 ≠ -∞)
94933ad2antl1 1186 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) ∧ ¬ -∞ < 𝑦) → 𝐵 ≠ -∞)
9594neneqd 2933 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) ∧ ¬ -∞ < 𝑦) → ¬ 𝐵 = -∞)
9692, 95condan 817 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → -∞ < 𝑦)
97 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦𝐴) ∧ ¬ 𝑦 < +∞) → ¬ 𝑦 < +∞)
9867adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑦𝐴) ∧ ¬ 𝑦 < +∞) → 𝑦 ∈ ℝ*)
99 nltpnft 13060 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℝ* → (𝑦 = +∞ ↔ ¬ 𝑦 < +∞))
10098, 99syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦𝐴) ∧ ¬ 𝑦 < +∞) → (𝑦 = +∞ ↔ ¬ 𝑦 < +∞))
10197, 100mpbird 257 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦𝐴) ∧ ¬ 𝑦 < +∞) → 𝑦 = +∞)
102101eqcomd 2737 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦𝐴) ∧ ¬ 𝑦 < +∞) → +∞ = 𝑦)
103 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦𝐴) → 𝑦𝐴)
104103adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦𝐴) ∧ ¬ 𝑦 < +∞) → 𝑦𝐴)
105102, 104eqeltrd 2831 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦𝐴) ∧ ¬ 𝑦 < +∞) → +∞ ∈ 𝐴)
1061053adantl2 1168 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ +∞ ∈ 𝐴𝑦𝐴) ∧ ¬ 𝑦 < +∞) → +∞ ∈ 𝐴)
107 simpl2 1193 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ +∞ ∈ 𝐴𝑦𝐴) ∧ ¬ 𝑦 < +∞) → ¬ +∞ ∈ 𝐴)
108106, 107condan 817 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ¬ +∞ ∈ 𝐴𝑦𝐴) → 𝑦 < +∞)
109108ad5ant125 1368 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴) → 𝑦 < +∞)
1101093adant3 1132 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → 𝑦 < +∞)
11196, 110jca 511 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (-∞ < 𝑦𝑦 < +∞))
11267ad5ant15 758 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ*)
1131123adant3 1132 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → 𝑦 ∈ ℝ*)
114 xrrebnd 13064 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ* → (𝑦 ∈ ℝ ↔ (-∞ < 𝑦𝑦 < +∞)))
115113, 114syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑦 ∈ ℝ ↔ (-∞ < 𝑦𝑦 < +∞)))
116111, 115mpbird 257 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → 𝑦 ∈ ℝ)
11775adantl 481 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) → (𝑤 / 2) ∈ ℝ)
1181173ad2ant1 1133 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑤 / 2) ∈ ℝ)
119 rexadd 13128 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ (𝑤 / 2) ∈ ℝ) → (𝑦 +𝑒 (𝑤 / 2)) = (𝑦 + (𝑤 / 2)))
120116, 118, 119syl2anc 584 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑦 +𝑒 (𝑤 / 2)) = (𝑦 + (𝑤 / 2)))
121116, 118readdcld 11138 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑦 + (𝑤 / 2)) ∈ ℝ)
122120, 121eqeltrd 2831 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑦 +𝑒 (𝑤 / 2)) ∈ ℝ)
123122rexrd 11159 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑦 +𝑒 (𝑤 / 2)) ∈ ℝ*)
124 pnfxr 11163 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
125124a1i 11 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → +∞ ∈ ℝ*)
126 simp3 1138 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2)))
127122ltpnfd 13017 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑦 +𝑒 (𝑤 / 2)) < +∞)
12861, 123, 125, 126, 127xrlelttrd 13056 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → 𝐵 < +∞)
12959, 128jca 511 . . . . . . . . . 10 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (-∞ < 𝐵𝐵 < +∞))
130 xrrebnd 13064 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → (𝐵 ∈ ℝ ↔ (-∞ < 𝐵𝐵 < +∞)))
13161, 130syl 17 . . . . . . . . . 10 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝐵 ∈ ℝ ↔ (-∞ < 𝐵𝐵 < +∞)))
132129, 131mpbird 257 . . . . . . . . 9 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → 𝐵 ∈ ℝ)
133 rpre 12896 . . . . . . . . . . . . 13 (𝑤 ∈ ℝ+𝑤 ∈ ℝ)
134133adantl 481 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ)
1351343ad2ant1 1133 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → 𝑤 ∈ ℝ)
136 rexadd 13128 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝑦 +𝑒 𝑤) = (𝑦 + 𝑤))
137116, 135, 136syl2anc 584 . . . . . . . . . 10 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑦 +𝑒 𝑤) = (𝑦 + 𝑤))
138116, 135readdcld 11138 . . . . . . . . . 10 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑦 + 𝑤) ∈ ℝ)
139137, 138eqeltrd 2831 . . . . . . . . 9 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑦 +𝑒 𝑤) ∈ ℝ)
140 rphalflt 12918 . . . . . . . . . . . . 13 (𝑤 ∈ ℝ+ → (𝑤 / 2) < 𝑤)
141140adantl 481 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) → (𝑤 / 2) < 𝑤)
1421413ad2ant1 1133 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑤 / 2) < 𝑤)
143118, 135, 116, 142ltadd2dd 11269 . . . . . . . . . 10 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑦 + (𝑤 / 2)) < (𝑦 + 𝑤))
144120, 137breq12d 5104 . . . . . . . . . 10 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → ((𝑦 +𝑒 (𝑤 / 2)) < (𝑦 +𝑒 𝑤) ↔ (𝑦 + (𝑤 / 2)) < (𝑦 + 𝑤)))
145143, 144mpbird 257 . . . . . . . . 9 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑦 +𝑒 (𝑤 / 2)) < (𝑦 +𝑒 𝑤))
146132, 122, 139, 126, 145lelttrd 11268 . . . . . . . 8 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → 𝐵 < (𝑦 +𝑒 𝑤))
1471463exp 1119 . . . . . . 7 ((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) → (𝑦𝐴 → (𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2)) → 𝐵 < (𝑦 +𝑒 𝑤))))
14850, 147reximdai 3234 . . . . . 6 ((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) → (∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2)) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 𝑤)))
14949, 148mpd 15 . . . . 5 ((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 𝑤))
15023, 25, 27, 149supxrgelem 45375 . . . 4 (((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
15120, 22, 150syl2anc 584 . . 3 (((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ ¬ 𝐵 = -∞) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
15219, 151pm2.61dan 812 . 2 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
15311, 152pm2.61dan 812 1 (𝜑𝐵 ≤ sup(𝐴, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wnf 1784  wcel 2111  wne 2928  wrex 3056  Vcvv 3436  wss 3902   class class class wbr 5091  (class class class)co 7346  supcsup 9324  cr 11002   + caddc 11006  +∞cpnf 11140  -∞cmnf 11141  *cxr 11142   < clt 11143  cle 11144   / cdiv 11771  2c2 12177  +crp 12887   +𝑒 cxad 13006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-rp 12888  df-xadd 13009
This theorem is referenced by:  sge0gerp  46432
  Copyright terms: Public domain W3C validator