Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supxrge Structured version   Visualization version   GIF version

Theorem supxrge 44510
Description: If an extended real number can be approximated from below by members of a set, then it is less than or equal to the supremum of the set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
supxrge.xph 𝑥𝜑
supxrge.a (𝜑𝐴 ⊆ ℝ*)
supxrge.b (𝜑𝐵 ∈ ℝ*)
supxrge.y ((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 𝑥))
Assertion
Ref Expression
supxrge (𝜑𝐵 ≤ sup(𝐴, ℝ*, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem supxrge
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 supxrge.b . . . . 5 (𝜑𝐵 ∈ ℝ*)
2 pnfge 13117 . . . . 5 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
31, 2syl 17 . . . 4 (𝜑𝐵 ≤ +∞)
43adantr 480 . . 3 ((𝜑 ∧ +∞ ∈ 𝐴) → 𝐵 ≤ +∞)
5 supxrge.a . . . . . 6 (𝜑𝐴 ⊆ ℝ*)
65adantr 480 . . . . 5 ((𝜑 ∧ +∞ ∈ 𝐴) → 𝐴 ⊆ ℝ*)
7 simpr 484 . . . . 5 ((𝜑 ∧ +∞ ∈ 𝐴) → +∞ ∈ 𝐴)
8 supxrpnf 13304 . . . . 5 ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) = +∞)
96, 7, 8syl2anc 583 . . . 4 ((𝜑 ∧ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) = +∞)
109eqcomd 2737 . . 3 ((𝜑 ∧ +∞ ∈ 𝐴) → +∞ = sup(𝐴, ℝ*, < ))
114, 10breqtrd 5174 . 2 ((𝜑 ∧ +∞ ∈ 𝐴) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
12 simpr 484 . . . . 5 ((𝜑𝐵 = -∞) → 𝐵 = -∞)
13 supxrcl 13301 . . . . . . . 8 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
145, 13syl 17 . . . . . . 7 (𝜑 → sup(𝐴, ℝ*, < ) ∈ ℝ*)
15 mnfle 13121 . . . . . . 7 (sup(𝐴, ℝ*, < ) ∈ ℝ* → -∞ ≤ sup(𝐴, ℝ*, < ))
1614, 15syl 17 . . . . . 6 (𝜑 → -∞ ≤ sup(𝐴, ℝ*, < ))
1716adantr 480 . . . . 5 ((𝜑𝐵 = -∞) → -∞ ≤ sup(𝐴, ℝ*, < ))
1812, 17eqbrtrd 5170 . . . 4 ((𝜑𝐵 = -∞) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
1918adantlr 712 . . 3 (((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 = -∞) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
20 simpl 482 . . . 4 (((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ ¬ 𝐵 = -∞) → (𝜑 ∧ ¬ +∞ ∈ 𝐴))
21 neqne 2947 . . . . 5 𝐵 = -∞ → 𝐵 ≠ -∞)
2221adantl 481 . . . 4 (((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ ¬ 𝐵 = -∞) → 𝐵 ≠ -∞)
23 nfv 1916 . . . . 5 𝑤((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞)
245adantr 480 . . . . . 6 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → 𝐴 ⊆ ℝ*)
2524adantr 480 . . . . 5 (((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) → 𝐴 ⊆ ℝ*)
261adantr 480 . . . . . 6 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → 𝐵 ∈ ℝ*)
2726adantr 480 . . . . 5 (((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) → 𝐵 ∈ ℝ*)
28 simpl 482 . . . . . . . . 9 ((𝜑𝑤 ∈ ℝ+) → 𝜑)
29 rphalfcl 13008 . . . . . . . . . 10 (𝑤 ∈ ℝ+ → (𝑤 / 2) ∈ ℝ+)
3029adantl 481 . . . . . . . . 9 ((𝜑𝑤 ∈ ℝ+) → (𝑤 / 2) ∈ ℝ+)
31 ovex 7445 . . . . . . . . . 10 (𝑤 / 2) ∈ V
32 nfcv 2902 . . . . . . . . . . 11 𝑥(𝑤 / 2)
33 supxrge.xph . . . . . . . . . . . . 13 𝑥𝜑
34 nfv 1916 . . . . . . . . . . . . 13 𝑥(𝑤 / 2) ∈ ℝ+
3533, 34nfan 1901 . . . . . . . . . . . 12 𝑥(𝜑 ∧ (𝑤 / 2) ∈ ℝ+)
36 nfv 1916 . . . . . . . . . . . 12 𝑥𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))
3735, 36nfim 1898 . . . . . . . . . . 11 𝑥((𝜑 ∧ (𝑤 / 2) ∈ ℝ+) → ∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2)))
38 eleq1 2820 . . . . . . . . . . . . 13 (𝑥 = (𝑤 / 2) → (𝑥 ∈ ℝ+ ↔ (𝑤 / 2) ∈ ℝ+))
3938anbi2d 628 . . . . . . . . . . . 12 (𝑥 = (𝑤 / 2) → ((𝜑𝑥 ∈ ℝ+) ↔ (𝜑 ∧ (𝑤 / 2) ∈ ℝ+)))
40 oveq2 7420 . . . . . . . . . . . . . 14 (𝑥 = (𝑤 / 2) → (𝑦 +𝑒 𝑥) = (𝑦 +𝑒 (𝑤 / 2)))
4140breq2d 5160 . . . . . . . . . . . . 13 (𝑥 = (𝑤 / 2) → (𝐵 ≤ (𝑦 +𝑒 𝑥) ↔ 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))))
4241rexbidv 3177 . . . . . . . . . . . 12 (𝑥 = (𝑤 / 2) → (∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 𝑥) ↔ ∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))))
4339, 42imbi12d 344 . . . . . . . . . . 11 (𝑥 = (𝑤 / 2) → (((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 𝑥)) ↔ ((𝜑 ∧ (𝑤 / 2) ∈ ℝ+) → ∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2)))))
44 supxrge.y . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 𝑥))
4532, 37, 43, 44vtoclgf 3557 . . . . . . . . . 10 ((𝑤 / 2) ∈ V → ((𝜑 ∧ (𝑤 / 2) ∈ ℝ+) → ∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))))
4631, 45ax-mp 5 . . . . . . . . 9 ((𝜑 ∧ (𝑤 / 2) ∈ ℝ+) → ∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2)))
4728, 30, 46syl2anc 583 . . . . . . . 8 ((𝜑𝑤 ∈ ℝ+) → ∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2)))
4847adantlr 712 . . . . . . 7 (((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝑤 ∈ ℝ+) → ∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2)))
4948adantlr 712 . . . . . 6 ((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) → ∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2)))
50 nfv 1916 . . . . . . 7 𝑦(((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+)
51 neneq 2945 . . . . . . . . . . . . . . . 16 (𝐵 ≠ -∞ → ¬ 𝐵 = -∞)
5251adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝐵 ≠ -∞) → ¬ 𝐵 = -∞)
531adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐵 ≠ -∞) → 𝐵 ∈ ℝ*)
54 ngtmnft 13152 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ* → (𝐵 = -∞ ↔ ¬ -∞ < 𝐵))
5553, 54syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝐵 ≠ -∞) → (𝐵 = -∞ ↔ ¬ -∞ < 𝐵))
5652, 55mtbid 324 . . . . . . . . . . . . . 14 ((𝜑𝐵 ≠ -∞) → ¬ ¬ -∞ < 𝐵)
5756notnotrd 133 . . . . . . . . . . . . 13 ((𝜑𝐵 ≠ -∞) → -∞ < 𝐵)
5857ad4ant13 748 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) → -∞ < 𝐵)
59583ad2ant1 1132 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → -∞ < 𝐵)
6027adantr 480 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) → 𝐵 ∈ ℝ*)
61603ad2ant1 1132 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → 𝐵 ∈ ℝ*)
6261adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) ∧ ¬ -∞ < 𝑦) → 𝐵 ∈ ℝ*)
63 mnfxr 11278 . . . . . . . . . . . . . . . . . . . 20 -∞ ∈ ℝ*
6463a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) ∧ ¬ -∞ < 𝑦) → -∞ ∈ ℝ*)
65 simpl3 1192 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) ∧ ¬ -∞ < 𝑦) → 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2)))
66 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → ¬ -∞ < 𝑦)
675sselda 3982 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑦𝐴) → 𝑦 ∈ ℝ*)
6867adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 𝑦 ∈ ℝ*)
69 ngtmnft 13152 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ ℝ* → (𝑦 = -∞ ↔ ¬ -∞ < 𝑦))
7068, 69syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (𝑦 = -∞ ↔ ¬ -∞ < 𝑦))
7166, 70mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 𝑦 = -∞)
7271oveq1d 7427 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (𝑦 +𝑒 (𝑤 / 2)) = (-∞ +𝑒 (𝑤 / 2)))
7372adantllr 716 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (𝑦 +𝑒 (𝑤 / 2)) = (-∞ +𝑒 (𝑤 / 2)))
7429rpxrd 13024 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 ∈ ℝ+ → (𝑤 / 2) ∈ ℝ*)
7529rpred 13023 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 ∈ ℝ+ → (𝑤 / 2) ∈ ℝ)
76 renepnf 11269 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑤 / 2) ∈ ℝ → (𝑤 / 2) ≠ +∞)
7775, 76syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 ∈ ℝ+ → (𝑤 / 2) ≠ +∞)
78 xaddmnf2 13215 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑤 / 2) ∈ ℝ* ∧ (𝑤 / 2) ≠ +∞) → (-∞ +𝑒 (𝑤 / 2)) = -∞)
7974, 77, 78syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 ∈ ℝ+ → (-∞ +𝑒 (𝑤 / 2)) = -∞)
8079adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑤 ∈ ℝ+) → (-∞ +𝑒 (𝑤 / 2)) = -∞)
8180ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (-∞ +𝑒 (𝑤 / 2)) = -∞)
8273, 81eqtrd 2771 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (𝑦 +𝑒 (𝑤 / 2)) = -∞)
8382adantl3r 747 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (𝑦 +𝑒 (𝑤 / 2)) = -∞)
8483adantl3r 747 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (𝑦 +𝑒 (𝑤 / 2)) = -∞)
85843adantl3 1167 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) ∧ ¬ -∞ < 𝑦) → (𝑦 +𝑒 (𝑤 / 2)) = -∞)
8665, 85breqtrd 5174 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) ∧ ¬ -∞ < 𝑦) → 𝐵 ≤ -∞)
87 mnfle 13121 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐵 ∈ ℝ* → -∞ ≤ 𝐵)
881, 87syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → -∞ ≤ 𝐵)
8988adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → -∞ ≤ 𝐵)
9089ad3antrrr 727 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ ¬ -∞ < 𝑦) → -∞ ≤ 𝐵)
91903ad2antl1 1184 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) ∧ ¬ -∞ < 𝑦) → -∞ ≤ 𝐵)
9262, 64, 86, 91xrletrid 13141 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) ∧ ¬ -∞ < 𝑦) → 𝐵 = -∞)
93 simpllr 773 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ ¬ -∞ < 𝑦) → 𝐵 ≠ -∞)
94933ad2antl1 1184 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) ∧ ¬ -∞ < 𝑦) → 𝐵 ≠ -∞)
9594neneqd 2944 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) ∧ ¬ -∞ < 𝑦) → ¬ 𝐵 = -∞)
9692, 95condan 815 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → -∞ < 𝑦)
97 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦𝐴) ∧ ¬ 𝑦 < +∞) → ¬ 𝑦 < +∞)
9867adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑦𝐴) ∧ ¬ 𝑦 < +∞) → 𝑦 ∈ ℝ*)
99 nltpnft 13150 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℝ* → (𝑦 = +∞ ↔ ¬ 𝑦 < +∞))
10098, 99syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦𝐴) ∧ ¬ 𝑦 < +∞) → (𝑦 = +∞ ↔ ¬ 𝑦 < +∞))
10197, 100mpbird 257 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦𝐴) ∧ ¬ 𝑦 < +∞) → 𝑦 = +∞)
102101eqcomd 2737 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦𝐴) ∧ ¬ 𝑦 < +∞) → +∞ = 𝑦)
103 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦𝐴) → 𝑦𝐴)
104103adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦𝐴) ∧ ¬ 𝑦 < +∞) → 𝑦𝐴)
105102, 104eqeltrd 2832 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦𝐴) ∧ ¬ 𝑦 < +∞) → +∞ ∈ 𝐴)
1061053adantl2 1166 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ +∞ ∈ 𝐴𝑦𝐴) ∧ ¬ 𝑦 < +∞) → +∞ ∈ 𝐴)
107 simpl2 1191 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ +∞ ∈ 𝐴𝑦𝐴) ∧ ¬ 𝑦 < +∞) → ¬ +∞ ∈ 𝐴)
108106, 107condan 815 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ¬ +∞ ∈ 𝐴𝑦𝐴) → 𝑦 < +∞)
109108ad5ant125 1365 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴) → 𝑦 < +∞)
1101093adant3 1131 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → 𝑦 < +∞)
11196, 110jca 511 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (-∞ < 𝑦𝑦 < +∞))
11267ad5ant15 756 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ*)
1131123adant3 1131 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → 𝑦 ∈ ℝ*)
114 xrrebnd 13154 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ* → (𝑦 ∈ ℝ ↔ (-∞ < 𝑦𝑦 < +∞)))
115113, 114syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑦 ∈ ℝ ↔ (-∞ < 𝑦𝑦 < +∞)))
116111, 115mpbird 257 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → 𝑦 ∈ ℝ)
11775adantl 481 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) → (𝑤 / 2) ∈ ℝ)
1181173ad2ant1 1132 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑤 / 2) ∈ ℝ)
119 rexadd 13218 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ (𝑤 / 2) ∈ ℝ) → (𝑦 +𝑒 (𝑤 / 2)) = (𝑦 + (𝑤 / 2)))
120116, 118, 119syl2anc 583 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑦 +𝑒 (𝑤 / 2)) = (𝑦 + (𝑤 / 2)))
121116, 118readdcld 11250 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑦 + (𝑤 / 2)) ∈ ℝ)
122120, 121eqeltrd 2832 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑦 +𝑒 (𝑤 / 2)) ∈ ℝ)
123122rexrd 11271 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑦 +𝑒 (𝑤 / 2)) ∈ ℝ*)
124 pnfxr 11275 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
125124a1i 11 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → +∞ ∈ ℝ*)
126 simp3 1137 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2)))
127122ltpnfd 13108 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑦 +𝑒 (𝑤 / 2)) < +∞)
12861, 123, 125, 126, 127xrlelttrd 13146 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → 𝐵 < +∞)
12959, 128jca 511 . . . . . . . . . 10 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (-∞ < 𝐵𝐵 < +∞))
130 xrrebnd 13154 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → (𝐵 ∈ ℝ ↔ (-∞ < 𝐵𝐵 < +∞)))
13161, 130syl 17 . . . . . . . . . 10 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝐵 ∈ ℝ ↔ (-∞ < 𝐵𝐵 < +∞)))
132129, 131mpbird 257 . . . . . . . . 9 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → 𝐵 ∈ ℝ)
133 rpre 12989 . . . . . . . . . . . . 13 (𝑤 ∈ ℝ+𝑤 ∈ ℝ)
134133adantl 481 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ)
1351343ad2ant1 1132 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → 𝑤 ∈ ℝ)
136 rexadd 13218 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝑦 +𝑒 𝑤) = (𝑦 + 𝑤))
137116, 135, 136syl2anc 583 . . . . . . . . . 10 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑦 +𝑒 𝑤) = (𝑦 + 𝑤))
138116, 135readdcld 11250 . . . . . . . . . 10 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑦 + 𝑤) ∈ ℝ)
139137, 138eqeltrd 2832 . . . . . . . . 9 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑦 +𝑒 𝑤) ∈ ℝ)
140 rphalflt 13010 . . . . . . . . . . . . 13 (𝑤 ∈ ℝ+ → (𝑤 / 2) < 𝑤)
141140adantl 481 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) → (𝑤 / 2) < 𝑤)
1421413ad2ant1 1132 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑤 / 2) < 𝑤)
143118, 135, 116, 142ltadd2dd 11380 . . . . . . . . . 10 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑦 + (𝑤 / 2)) < (𝑦 + 𝑤))
144120, 137breq12d 5161 . . . . . . . . . 10 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → ((𝑦 +𝑒 (𝑤 / 2)) < (𝑦 +𝑒 𝑤) ↔ (𝑦 + (𝑤 / 2)) < (𝑦 + 𝑤)))
145143, 144mpbird 257 . . . . . . . . 9 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑦 +𝑒 (𝑤 / 2)) < (𝑦 +𝑒 𝑤))
146132, 122, 139, 126, 145lelttrd 11379 . . . . . . . 8 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → 𝐵 < (𝑦 +𝑒 𝑤))
1471463exp 1118 . . . . . . 7 ((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) → (𝑦𝐴 → (𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2)) → 𝐵 < (𝑦 +𝑒 𝑤))))
14850, 147reximdai 3257 . . . . . 6 ((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) → (∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2)) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 𝑤)))
14949, 148mpd 15 . . . . 5 ((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 𝑤))
15023, 25, 27, 149supxrgelem 44509 . . . 4 (((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
15120, 22, 150syl2anc 583 . . 3 (((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ ¬ 𝐵 = -∞) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
15219, 151pm2.61dan 810 . 2 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
15311, 152pm2.61dan 810 1 (𝜑𝐵 ≤ sup(𝐴, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wnf 1784  wcel 2105  wne 2939  wrex 3069  Vcvv 3473  wss 3948   class class class wbr 5148  (class class class)co 7412  supcsup 9441  cr 11115   + caddc 11119  +∞cpnf 11252  -∞cmnf 11253  *cxr 11254   < clt 11255  cle 11256   / cdiv 11878  2c2 12274  +crp 12981   +𝑒 cxad 13097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-sup 9443  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-2 12282  df-rp 12982  df-xadd 13100
This theorem is referenced by:  sge0gerp  45573
  Copyright terms: Public domain W3C validator