MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad5ant134 Structured version   Visualization version   GIF version

Theorem ad5ant134 1486
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
Hypothesis
Ref Expression
ad5ant.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
ad5ant134 (((((𝜑𝜏) ∧ 𝜓) ∧ 𝜒) ∧ 𝜂) → 𝜃)

Proof of Theorem ad5ant134
StepHypRef Expression
1 ad5ant.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
21ad4ant134 1221 . 2 ((((𝜑𝜏) ∧ 𝜓) ∧ 𝜒) → 𝜃)
32adantr 474 1 (((((𝜑𝜏) ∧ 𝜓) ∧ 𝜒) ∧ 𝜂) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 387  df-3an 1113
This theorem is referenced by:  suplesup  40350  limsupvaluz2  40763  supcnvlimsup  40765  limsupgtlem  40802  xlimmnfvlem2  40852  xlimmnfv  40853  xlimpnfvlem2  40856  xlimpnfv  40857  sge0cl  41387  hspmbllem2  41633
  Copyright terms: Public domain W3C validator