MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adantl4r Structured version   Visualization version   GIF version

Theorem adantl4r 751
Description: Deduction adding 1 conjunct to antecedent. (Contributed by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
adantl4r.1 (((((𝜑𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜅)
Assertion
Ref Expression
adantl4r ((((((𝜑𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜅)

Proof of Theorem adantl4r
StepHypRef Expression
1 adantl4r.1 . . . 4 (((((𝜑𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜅)
21ex 412 . . 3 ((((𝜑𝜎) ∧ 𝜌) ∧ 𝜇) → (𝜆𝜅))
32adantl3r 746 . 2 (((((𝜑𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) → (𝜆𝜅))
43imp 406 1 ((((((𝜑𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  adantl5r  759  perpneq  26979  rhmimaidl  31511  zarclsun  31722  pstmxmet  31749  limsupmnflem  43151  xlimmnfvlem2  43264  xlimpnfvlem2  43268  icccncfext  43318  hspmbllem2  44055
  Copyright terms: Public domain W3C validator