| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adantl4r | Structured version Visualization version GIF version | ||
| Description: Deduction adding 1 conjunct to antecedent. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
| Ref | Expression |
|---|---|
| adantl4r.1 | ⊢ (((((𝜑 ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜅) |
| Ref | Expression |
|---|---|
| adantl4r | ⊢ ((((((𝜑 ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adantl4r.1 | . . . 4 ⊢ (((((𝜑 ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜅) | |
| 2 | 1 | ex 412 | . . 3 ⊢ ((((𝜑 ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) → (𝜆 → 𝜅)) |
| 3 | 2 | adantl3r 750 | . 2 ⊢ (((((𝜑 ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) → (𝜆 → 𝜅)) |
| 4 | 3 | imp 406 | 1 ⊢ ((((((𝜑 ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: adantl5r 762 perpneq 28698 rhmimaidl 33452 zarclsun 33906 pstmxmet 33933 limsupmnflem 45716 xlimmnfvlem2 45829 xlimpnfvlem2 45833 icccncfext 45883 hspmbllem2 46623 |
| Copyright terms: Public domain | W3C validator |