|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > adantl4r | Structured version Visualization version GIF version | ||
| Description: Deduction adding 1 conjunct to antecedent. (Contributed by Thierry Arnoux, 11-Feb-2018.) | 
| Ref | Expression | 
|---|---|
| adantl4r.1 | ⊢ (((((𝜑 ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜅) | 
| Ref | Expression | 
|---|---|
| adantl4r | ⊢ ((((((𝜑 ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜅) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | adantl4r.1 | . . . 4 ⊢ (((((𝜑 ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜅) | |
| 2 | 1 | ex 412 | . . 3 ⊢ ((((𝜑 ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) → (𝜆 → 𝜅)) | 
| 3 | 2 | adantl3r 750 | . 2 ⊢ (((((𝜑 ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) → (𝜆 → 𝜅)) | 
| 4 | 3 | imp 406 | 1 ⊢ ((((((𝜑 ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜅) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: adantl5r 762 perpneq 28723 rhmimaidl 33461 zarclsun 33870 pstmxmet 33897 limsupmnflem 45740 xlimmnfvlem2 45853 xlimpnfvlem2 45857 icccncfext 45907 hspmbllem2 46647 | 
| Copyright terms: Public domain | W3C validator |