MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqmo Structured version   Visualization version   GIF version

Theorem 2sqmo 27174
Description: There exists at most one decomposition of a prime as a sum of two squares. See 2sqb 27169 for the existence of such a decomposition. (Contributed by Thierry Arnoux, 2-Feb-2020.)
Assertion
Ref Expression
2sqmo (𝑃 ∈ ℙ → ∃*𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
Distinct variable group:   𝑃,𝑎,𝑏

Proof of Theorem 2sqmo
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . . . . . . . . . . . 12 𝑏((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0)
2 nfre1 3280 . . . . . . . . . . . 12 𝑏𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)
31, 2nfan 1900 . . . . . . . . . . 11 𝑏(((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
4 nfv 1915 . . . . . . . . . . 11 𝑏 𝑑 ∈ ℕ0
53, 4nfan 1900 . . . . . . . . . 10 𝑏((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0)
6 nfv 1915 . . . . . . . . . 10 𝑏 𝑐𝑑
75, 6nfan 1900 . . . . . . . . 9 𝑏(((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑)
8 nfv 1915 . . . . . . . . 9 𝑏((𝑐↑2) + (𝑑↑2)) = 𝑃
97, 8nfan 1900 . . . . . . . 8 𝑏((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)
10 simp-8l 787 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑃 ∈ ℙ)
11 simp-8r 788 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑎 ∈ ℕ0)
12 simpllr 772 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑏 ∈ ℕ0)
13 simp-7r 786 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑐 ∈ ℕ0)
14 simp-6r 784 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑑 ∈ ℕ0)
15 simplr 765 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑎𝑏)
16 simp-5r 782 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑐𝑑)
17 simpr 483 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ((𝑎↑2) + (𝑏↑2)) = 𝑃)
18 simp-4r 780 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ((𝑐↑2) + (𝑑↑2)) = 𝑃)
1910, 11, 12, 13, 14, 15, 16, 17, 182sqmod 27173 . . . . . . . . . . 11 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑎 = 𝑐𝑏 = 𝑑))
2019simpld 493 . . . . . . . . . 10 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑎 = 𝑐)
2120anasss 465 . . . . . . . . 9 ((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → 𝑎 = 𝑐)
2221adantl5r 759 . . . . . . . 8 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → 𝑎 = 𝑐)
23 simp-4r 780 . . . . . . . 8 (((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) → ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
249, 22, 23r19.29af 3263 . . . . . . 7 (((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) → 𝑎 = 𝑐)
2524anasss 465 . . . . . 6 ((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐)
2625r19.29an 3156 . . . . 5 (((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ ∃𝑑 ∈ ℕ0 (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐)
2726expl 456 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) → ((∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃𝑑 ∈ ℕ0 (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐))
2827ralrimiva 3144 . . 3 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) → ∀𝑐 ∈ ℕ0 ((∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃𝑑 ∈ ℕ0 (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐))
2928ralrimiva 3144 . 2 (𝑃 ∈ ℙ → ∀𝑎 ∈ ℕ0𝑐 ∈ ℕ0 ((∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃𝑑 ∈ ℕ0 (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐))
30 breq12 5154 . . . . 5 ((𝑎 = 𝑐𝑏 = 𝑑) → (𝑎𝑏𝑐𝑑))
31 simpl 481 . . . . . . . 8 ((𝑎 = 𝑐𝑏 = 𝑑) → 𝑎 = 𝑐)
3231oveq1d 7428 . . . . . . 7 ((𝑎 = 𝑐𝑏 = 𝑑) → (𝑎↑2) = (𝑐↑2))
33 simpr 483 . . . . . . . 8 ((𝑎 = 𝑐𝑏 = 𝑑) → 𝑏 = 𝑑)
3433oveq1d 7428 . . . . . . 7 ((𝑎 = 𝑐𝑏 = 𝑑) → (𝑏↑2) = (𝑑↑2))
3532, 34oveq12d 7431 . . . . . 6 ((𝑎 = 𝑐𝑏 = 𝑑) → ((𝑎↑2) + (𝑏↑2)) = ((𝑐↑2) + (𝑑↑2)))
3635eqeq1d 2732 . . . . 5 ((𝑎 = 𝑐𝑏 = 𝑑) → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑐↑2) + (𝑑↑2)) = 𝑃))
3730, 36anbi12d 629 . . . 4 ((𝑎 = 𝑐𝑏 = 𝑑) → ((𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)))
3837cbvrexdva 3235 . . 3 (𝑎 = 𝑐 → (∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃𝑑 ∈ ℕ0 (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)))
3938rmo4 3727 . 2 (∃*𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∀𝑎 ∈ ℕ0𝑐 ∈ ℕ0 ((∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃𝑑 ∈ ℕ0 (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐))
4029, 39sylibr 233 1 (𝑃 ∈ ℙ → ∃*𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wcel 2104  wral 3059  wrex 3068  ∃*wrmo 3373   class class class wbr 5149  (class class class)co 7413   + caddc 11117  cle 11255  2c2 12273  0cn0 12478  cexp 14033  cprime 16614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191  ax-pre-sup 11192
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7860  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-2o 8471  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-sup 9441  df-inf 9442  df-pnf 11256  df-mnf 11257  df-xr 11258  df-ltxr 11259  df-le 11260  df-sub 11452  df-neg 11453  df-div 11878  df-nn 12219  df-2 12281  df-3 12282  df-n0 12479  df-z 12565  df-uz 12829  df-rp 12981  df-fl 13763  df-mod 13841  df-seq 13973  df-exp 14034  df-cj 15052  df-re 15053  df-im 15054  df-sqrt 15188  df-abs 15189  df-dvds 16204  df-gcd 16442  df-prm 16615
This theorem is referenced by:  2sqreulem1  27183  2sqreunnlem1  27186
  Copyright terms: Public domain W3C validator