MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqmo Structured version   Visualization version   GIF version

Theorem 2sqmo 27496
Description: There exists at most one decomposition of a prime as a sum of two squares. See 2sqb 27491 for the existence of such a decomposition. (Contributed by Thierry Arnoux, 2-Feb-2020.)
Assertion
Ref Expression
2sqmo (𝑃 ∈ ℙ → ∃*𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
Distinct variable group:   𝑃,𝑎,𝑏

Proof of Theorem 2sqmo
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1912 . . . . . . . . . . . 12 𝑏((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0)
2 nfre1 3283 . . . . . . . . . . . 12 𝑏𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)
31, 2nfan 1897 . . . . . . . . . . 11 𝑏(((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
4 nfv 1912 . . . . . . . . . . 11 𝑏 𝑑 ∈ ℕ0
53, 4nfan 1897 . . . . . . . . . 10 𝑏((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0)
6 nfv 1912 . . . . . . . . . 10 𝑏 𝑐𝑑
75, 6nfan 1897 . . . . . . . . 9 𝑏(((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑)
8 nfv 1912 . . . . . . . . 9 𝑏((𝑐↑2) + (𝑑↑2)) = 𝑃
97, 8nfan 1897 . . . . . . . 8 𝑏((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)
10 simp-8l 791 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑃 ∈ ℙ)
11 simp-8r 792 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑎 ∈ ℕ0)
12 simpllr 776 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑏 ∈ ℕ0)
13 simp-7r 790 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑐 ∈ ℕ0)
14 simp-6r 788 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑑 ∈ ℕ0)
15 simplr 769 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑎𝑏)
16 simp-5r 786 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑐𝑑)
17 simpr 484 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ((𝑎↑2) + (𝑏↑2)) = 𝑃)
18 simp-4r 784 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ((𝑐↑2) + (𝑑↑2)) = 𝑃)
1910, 11, 12, 13, 14, 15, 16, 17, 182sqmod 27495 . . . . . . . . . . 11 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑎 = 𝑐𝑏 = 𝑑))
2019simpld 494 . . . . . . . . . 10 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑎 = 𝑐)
2120anasss 466 . . . . . . . . 9 ((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → 𝑎 = 𝑐)
2221adantl5r 763 . . . . . . . 8 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → 𝑎 = 𝑐)
23 simp-4r 784 . . . . . . . 8 (((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) → ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
249, 22, 23r19.29af 3266 . . . . . . 7 (((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) → 𝑎 = 𝑐)
2524anasss 466 . . . . . 6 ((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐)
2625r19.29an 3156 . . . . 5 (((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ ∃𝑑 ∈ ℕ0 (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐)
2726expl 457 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) → ((∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃𝑑 ∈ ℕ0 (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐))
2827ralrimiva 3144 . . 3 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) → ∀𝑐 ∈ ℕ0 ((∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃𝑑 ∈ ℕ0 (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐))
2928ralrimiva 3144 . 2 (𝑃 ∈ ℙ → ∀𝑎 ∈ ℕ0𝑐 ∈ ℕ0 ((∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃𝑑 ∈ ℕ0 (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐))
30 breq12 5153 . . . . 5 ((𝑎 = 𝑐𝑏 = 𝑑) → (𝑎𝑏𝑐𝑑))
31 simpl 482 . . . . . . . 8 ((𝑎 = 𝑐𝑏 = 𝑑) → 𝑎 = 𝑐)
3231oveq1d 7446 . . . . . . 7 ((𝑎 = 𝑐𝑏 = 𝑑) → (𝑎↑2) = (𝑐↑2))
33 simpr 484 . . . . . . . 8 ((𝑎 = 𝑐𝑏 = 𝑑) → 𝑏 = 𝑑)
3433oveq1d 7446 . . . . . . 7 ((𝑎 = 𝑐𝑏 = 𝑑) → (𝑏↑2) = (𝑑↑2))
3532, 34oveq12d 7449 . . . . . 6 ((𝑎 = 𝑐𝑏 = 𝑑) → ((𝑎↑2) + (𝑏↑2)) = ((𝑐↑2) + (𝑑↑2)))
3635eqeq1d 2737 . . . . 5 ((𝑎 = 𝑐𝑏 = 𝑑) → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑐↑2) + (𝑑↑2)) = 𝑃))
3730, 36anbi12d 632 . . . 4 ((𝑎 = 𝑐𝑏 = 𝑑) → ((𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)))
3837cbvrexdva 3238 . . 3 (𝑎 = 𝑐 → (∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃𝑑 ∈ ℕ0 (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)))
3938rmo4 3739 . 2 (∃*𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∀𝑎 ∈ ℕ0𝑐 ∈ ℕ0 ((∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃𝑑 ∈ ℕ0 (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐))
4029, 39sylibr 234 1 (𝑃 ∈ ℙ → ∃*𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  ∃*wrmo 3377   class class class wbr 5148  (class class class)co 7431   + caddc 11156  cle 11294  2c2 12319  0cn0 12524  cexp 14099  cprime 16705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529  df-prm 16706
This theorem is referenced by:  2sqreulem1  27505  2sqreunnlem1  27508
  Copyright terms: Public domain W3C validator