| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1914 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑏((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0)
∧ 𝑐 ∈
ℕ0) |
| 2 | | nfre1 3267 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑏∃𝑏 ∈ ℕ0
(𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) |
| 3 | 1, 2 | nfan 1899 |
. . . . . . . . . . 11
⊢
Ⅎ𝑏(((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0)
∧ 𝑐 ∈
ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
| 4 | | nfv 1914 |
. . . . . . . . . . 11
⊢
Ⅎ𝑏 𝑑 ∈
ℕ0 |
| 5 | 3, 4 | nfan 1899 |
. . . . . . . . . 10
⊢
Ⅎ𝑏((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0)
∧ 𝑐 ∈
ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) |
| 6 | | nfv 1914 |
. . . . . . . . . 10
⊢
Ⅎ𝑏 𝑐 ≤ 𝑑 |
| 7 | 5, 6 | nfan 1899 |
. . . . . . . . 9
⊢
Ⅎ𝑏(((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0)
∧ 𝑐 ∈
ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐 ≤ 𝑑) |
| 8 | | nfv 1914 |
. . . . . . . . 9
⊢
Ⅎ𝑏((𝑐↑2) + (𝑑↑2)) = 𝑃 |
| 9 | 7, 8 | nfan 1899 |
. . . . . . . 8
⊢
Ⅎ𝑏((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0)
∧ 𝑐 ∈
ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐 ≤ 𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) |
| 10 | | simp-8l 790 |
. . . . . . . . . . . 12
⊢
(((((((((𝑃 ∈
ℙ ∧ 𝑎 ∈
ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0)
∧ 𝑐 ≤ 𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎 ≤ 𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑃 ∈ ℙ) |
| 11 | | simp-8r 791 |
. . . . . . . . . . . 12
⊢
(((((((((𝑃 ∈
ℙ ∧ 𝑎 ∈
ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0)
∧ 𝑐 ≤ 𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎 ≤ 𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑎 ∈ ℕ0) |
| 12 | | simpllr 775 |
. . . . . . . . . . . 12
⊢
(((((((((𝑃 ∈
ℙ ∧ 𝑎 ∈
ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0)
∧ 𝑐 ≤ 𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎 ≤ 𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑏 ∈ ℕ0) |
| 13 | | simp-7r 789 |
. . . . . . . . . . . 12
⊢
(((((((((𝑃 ∈
ℙ ∧ 𝑎 ∈
ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0)
∧ 𝑐 ≤ 𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎 ≤ 𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑐 ∈ ℕ0) |
| 14 | | simp-6r 787 |
. . . . . . . . . . . 12
⊢
(((((((((𝑃 ∈
ℙ ∧ 𝑎 ∈
ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0)
∧ 𝑐 ≤ 𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎 ≤ 𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑑 ∈ ℕ0) |
| 15 | | simplr 768 |
. . . . . . . . . . . 12
⊢
(((((((((𝑃 ∈
ℙ ∧ 𝑎 ∈
ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0)
∧ 𝑐 ≤ 𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎 ≤ 𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑎 ≤ 𝑏) |
| 16 | | simp-5r 785 |
. . . . . . . . . . . 12
⊢
(((((((((𝑃 ∈
ℙ ∧ 𝑎 ∈
ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0)
∧ 𝑐 ≤ 𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎 ≤ 𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑐 ≤ 𝑑) |
| 17 | | simpr 484 |
. . . . . . . . . . . 12
⊢
(((((((((𝑃 ∈
ℙ ∧ 𝑎 ∈
ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0)
∧ 𝑐 ≤ 𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎 ≤ 𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ((𝑎↑2) + (𝑏↑2)) = 𝑃) |
| 18 | | simp-4r 783 |
. . . . . . . . . . . 12
⊢
(((((((((𝑃 ∈
ℙ ∧ 𝑎 ∈
ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0)
∧ 𝑐 ≤ 𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎 ≤ 𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ((𝑐↑2) + (𝑑↑2)) = 𝑃) |
| 19 | 10, 11, 12, 13, 14, 15, 16, 17, 18 | 2sqmod 27399 |
. . . . . . . . . . 11
⊢
(((((((((𝑃 ∈
ℙ ∧ 𝑎 ∈
ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0)
∧ 𝑐 ≤ 𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎 ≤ 𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑎 = 𝑐 ∧ 𝑏 = 𝑑)) |
| 20 | 19 | simpld 494 |
. . . . . . . . . 10
⊢
(((((((((𝑃 ∈
ℙ ∧ 𝑎 ∈
ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0)
∧ 𝑐 ≤ 𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎 ≤ 𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑎 = 𝑐) |
| 21 | 20 | anasss 466 |
. . . . . . . . 9
⊢
((((((((𝑃 ∈
ℙ ∧ 𝑎 ∈
ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0)
∧ 𝑐 ≤ 𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → 𝑎 = 𝑐) |
| 22 | 21 | adantl5r 762 |
. . . . . . . 8
⊢
(((((((((𝑃 ∈
ℙ ∧ 𝑎 ∈
ℕ0) ∧ 𝑐 ∈ ℕ0) ∧
∃𝑏 ∈
ℕ0 (𝑎 ≤
𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐 ≤ 𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → 𝑎 = 𝑐) |
| 23 | | simp-4r 783 |
. . . . . . . 8
⊢
(((((((𝑃 ∈
ℙ ∧ 𝑎 ∈
ℕ0) ∧ 𝑐 ∈ ℕ0) ∧
∃𝑏 ∈
ℕ0 (𝑎 ≤
𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐 ≤ 𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) → ∃𝑏 ∈ ℕ0 (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
| 24 | 9, 22, 23 | r19.29af 3251 |
. . . . . . 7
⊢
(((((((𝑃 ∈
ℙ ∧ 𝑎 ∈
ℕ0) ∧ 𝑐 ∈ ℕ0) ∧
∃𝑏 ∈
ℕ0 (𝑎 ≤
𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐 ≤ 𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) → 𝑎 = 𝑐) |
| 25 | 24 | anasss 466 |
. . . . . 6
⊢
((((((𝑃 ∈
ℙ ∧ 𝑎 ∈
ℕ0) ∧ 𝑐 ∈ ℕ0) ∧
∃𝑏 ∈
ℕ0 (𝑎 ≤
𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ (𝑐 ≤ 𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐) |
| 26 | 25 | r19.29an 3144 |
. . . . 5
⊢
(((((𝑃 ∈
ℙ ∧ 𝑎 ∈
ℕ0) ∧ 𝑐 ∈ ℕ0) ∧
∃𝑏 ∈
ℕ0 (𝑎 ≤
𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ ∃𝑑 ∈ ℕ0 (𝑐 ≤ 𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐) |
| 27 | 26 | expl 457 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0)
∧ 𝑐 ∈
ℕ0) → ((∃𝑏 ∈ ℕ0 (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃𝑑 ∈ ℕ0 (𝑐 ≤ 𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐)) |
| 28 | 27 | ralrimiva 3132 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0)
→ ∀𝑐 ∈
ℕ0 ((∃𝑏 ∈ ℕ0 (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃𝑑 ∈ ℕ0 (𝑐 ≤ 𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐)) |
| 29 | 28 | ralrimiva 3132 |
. 2
⊢ (𝑃 ∈ ℙ →
∀𝑎 ∈
ℕ0 ∀𝑐 ∈ ℕ0 ((∃𝑏 ∈ ℕ0
(𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃𝑑 ∈ ℕ0 (𝑐 ≤ 𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐)) |
| 30 | | breq12 5124 |
. . . . 5
⊢ ((𝑎 = 𝑐 ∧ 𝑏 = 𝑑) → (𝑎 ≤ 𝑏 ↔ 𝑐 ≤ 𝑑)) |
| 31 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑎 = 𝑐 ∧ 𝑏 = 𝑑) → 𝑎 = 𝑐) |
| 32 | 31 | oveq1d 7420 |
. . . . . . 7
⊢ ((𝑎 = 𝑐 ∧ 𝑏 = 𝑑) → (𝑎↑2) = (𝑐↑2)) |
| 33 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑎 = 𝑐 ∧ 𝑏 = 𝑑) → 𝑏 = 𝑑) |
| 34 | 33 | oveq1d 7420 |
. . . . . . 7
⊢ ((𝑎 = 𝑐 ∧ 𝑏 = 𝑑) → (𝑏↑2) = (𝑑↑2)) |
| 35 | 32, 34 | oveq12d 7423 |
. . . . . 6
⊢ ((𝑎 = 𝑐 ∧ 𝑏 = 𝑑) → ((𝑎↑2) + (𝑏↑2)) = ((𝑐↑2) + (𝑑↑2))) |
| 36 | 35 | eqeq1d 2737 |
. . . . 5
⊢ ((𝑎 = 𝑐 ∧ 𝑏 = 𝑑) → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) |
| 37 | 30, 36 | anbi12d 632 |
. . . 4
⊢ ((𝑎 = 𝑐 ∧ 𝑏 = 𝑑) → ((𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑐 ≤ 𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃))) |
| 38 | 37 | cbvrexdva 3223 |
. . 3
⊢ (𝑎 = 𝑐 → (∃𝑏 ∈ ℕ0 (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃𝑑 ∈ ℕ0 (𝑐 ≤ 𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃))) |
| 39 | 38 | rmo4 3713 |
. 2
⊢
(∃*𝑎 ∈
ℕ0 ∃𝑏 ∈ ℕ0 (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∀𝑎 ∈ ℕ0 ∀𝑐 ∈ ℕ0
((∃𝑏 ∈
ℕ0 (𝑎 ≤
𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃𝑑 ∈ ℕ0 (𝑐 ≤ 𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐)) |
| 40 | 29, 39 | sylibr 234 |
1
⊢ (𝑃 ∈ ℙ →
∃*𝑎 ∈
ℕ0 ∃𝑏 ∈ ℕ0 (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |