MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqmo Structured version   Visualization version   GIF version

Theorem 2sqmo 27346
Description: There exists at most one decomposition of a prime as a sum of two squares. See 2sqb 27341 for the existence of such a decomposition. (Contributed by Thierry Arnoux, 2-Feb-2020.)
Assertion
Ref Expression
2sqmo (𝑃 ∈ ℙ → ∃*𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
Distinct variable group:   𝑃,𝑎,𝑏

Proof of Theorem 2sqmo
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . . . . . . . . . 12 𝑏((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0)
2 nfre1 3254 . . . . . . . . . . . 12 𝑏𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)
31, 2nfan 1899 . . . . . . . . . . 11 𝑏(((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
4 nfv 1914 . . . . . . . . . . 11 𝑏 𝑑 ∈ ℕ0
53, 4nfan 1899 . . . . . . . . . 10 𝑏((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0)
6 nfv 1914 . . . . . . . . . 10 𝑏 𝑐𝑑
75, 6nfan 1899 . . . . . . . . 9 𝑏(((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑)
8 nfv 1914 . . . . . . . . 9 𝑏((𝑐↑2) + (𝑑↑2)) = 𝑃
97, 8nfan 1899 . . . . . . . 8 𝑏((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)
10 simp-8l 790 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑃 ∈ ℙ)
11 simp-8r 791 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑎 ∈ ℕ0)
12 simpllr 775 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑏 ∈ ℕ0)
13 simp-7r 789 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑐 ∈ ℕ0)
14 simp-6r 787 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑑 ∈ ℕ0)
15 simplr 768 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑎𝑏)
16 simp-5r 785 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑐𝑑)
17 simpr 484 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ((𝑎↑2) + (𝑏↑2)) = 𝑃)
18 simp-4r 783 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ((𝑐↑2) + (𝑑↑2)) = 𝑃)
1910, 11, 12, 13, 14, 15, 16, 17, 182sqmod 27345 . . . . . . . . . . 11 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑎 = 𝑐𝑏 = 𝑑))
2019simpld 494 . . . . . . . . . 10 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑎 = 𝑐)
2120anasss 466 . . . . . . . . 9 ((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → 𝑎 = 𝑐)
2221adantl5r 762 . . . . . . . 8 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → 𝑎 = 𝑐)
23 simp-4r 783 . . . . . . . 8 (((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) → ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
249, 22, 23r19.29af 3238 . . . . . . 7 (((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) → 𝑎 = 𝑐)
2524anasss 466 . . . . . 6 ((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐)
2625r19.29an 3133 . . . . 5 (((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ ∃𝑑 ∈ ℕ0 (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐)
2726expl 457 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) → ((∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃𝑑 ∈ ℕ0 (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐))
2827ralrimiva 3121 . . 3 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) → ∀𝑐 ∈ ℕ0 ((∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃𝑑 ∈ ℕ0 (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐))
2928ralrimiva 3121 . 2 (𝑃 ∈ ℙ → ∀𝑎 ∈ ℕ0𝑐 ∈ ℕ0 ((∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃𝑑 ∈ ℕ0 (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐))
30 breq12 5097 . . . . 5 ((𝑎 = 𝑐𝑏 = 𝑑) → (𝑎𝑏𝑐𝑑))
31 simpl 482 . . . . . . . 8 ((𝑎 = 𝑐𝑏 = 𝑑) → 𝑎 = 𝑐)
3231oveq1d 7364 . . . . . . 7 ((𝑎 = 𝑐𝑏 = 𝑑) → (𝑎↑2) = (𝑐↑2))
33 simpr 484 . . . . . . . 8 ((𝑎 = 𝑐𝑏 = 𝑑) → 𝑏 = 𝑑)
3433oveq1d 7364 . . . . . . 7 ((𝑎 = 𝑐𝑏 = 𝑑) → (𝑏↑2) = (𝑑↑2))
3532, 34oveq12d 7367 . . . . . 6 ((𝑎 = 𝑐𝑏 = 𝑑) → ((𝑎↑2) + (𝑏↑2)) = ((𝑐↑2) + (𝑑↑2)))
3635eqeq1d 2731 . . . . 5 ((𝑎 = 𝑐𝑏 = 𝑑) → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑐↑2) + (𝑑↑2)) = 𝑃))
3730, 36anbi12d 632 . . . 4 ((𝑎 = 𝑐𝑏 = 𝑑) → ((𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)))
3837cbvrexdva 3210 . . 3 (𝑎 = 𝑐 → (∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃𝑑 ∈ ℕ0 (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)))
3938rmo4 3690 . 2 (∃*𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∀𝑎 ∈ ℕ0𝑐 ∈ ℕ0 ((∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃𝑑 ∈ ℕ0 (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐))
4029, 39sylibr 234 1 (𝑃 ∈ ℙ → ∃*𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  ∃*wrmo 3342   class class class wbr 5092  (class class class)co 7349   + caddc 11012  cle 11150  2c2 12183  0cn0 12384  cexp 13968  cprime 16582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-prm 16583
This theorem is referenced by:  2sqreulem1  27355  2sqreunnlem1  27358
  Copyright terms: Public domain W3C validator