MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad5ant25 Structured version   Visualization version   GIF version

Theorem ad5ant25 758
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad5ant2.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad5ant25 (((((𝜃𝜑) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜒)

Proof of Theorem ad5ant25
StepHypRef Expression
1 ad5ant2.1 . . 3 ((𝜑𝜓) → 𝜒)
21adantll 710 . 2 (((𝜃𝜑) ∧ 𝜓) → 𝜒)
32ad4ant14 748 1 (((((𝜃𝜑) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  cpmatacl  21773  alexsubALTlem3  23108  axcontlem2  27236  nn0xmulclb  30996  matunitlindflem1  35700  nnfoctbdjlem  43883  hoidmvlelem5  44027
  Copyright terms: Public domain W3C validator