| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tbtru | Structured version Visualization version GIF version | ||
| Description: A proposition is equivalent to itself being equivalent to ⊤. (Contributed by Anthony Hart, 14-Aug-2011.) |
| Ref | Expression |
|---|---|
| tbtru | ⊢ (𝜑 ↔ (𝜑 ↔ ⊤)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1544 | . 2 ⊢ ⊤ | |
| 2 | 1 | tbt 369 | 1 ⊢ (𝜑 ↔ (𝜑 ↔ ⊤)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ⊤wtru 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-tru 1543 |
| This theorem is referenced by: falbitru 1570 ab0orv 4358 tgcgr4 28510 iinabrex 32550 sgn3da 32813 wl-1xor 37500 wl-1mintru1 37506 prjspvs 42633 lambert0 46919 lamberte 46920 aistia 46926 isinito2lem 49383 |
| Copyright terms: Public domain | W3C validator |