Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aisfbistiaxb Structured version   Visualization version   GIF version

Theorem aisfbistiaxb 44775
Description: Given a is equivalent to F., Given b is equivalent to T., there exists a proof for a-xor-b. (Contributed by Jarvin Udandy, 31-Aug-2016.)
Hypotheses
Ref Expression
aisfbistiaxb.1 (𝜑 ↔ ⊥)
aisfbistiaxb.2 (𝜓 ↔ ⊤)
Assertion
Ref Expression
aisfbistiaxb (𝜑𝜓)

Proof of Theorem aisfbistiaxb
StepHypRef Expression
1 aisfbistiaxb.1 . . 3 (𝜑 ↔ ⊥)
21aisfina 44753 . 2 ¬ 𝜑
3 aisfbistiaxb.2 . . 3 (𝜓 ↔ ⊤)
43aistia 44752 . 2 𝜓
52, 4abnotataxb 44771 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wxo 1508  wtru 1541  wfal 1552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-xor 1509  df-tru 1543  df-fal 1553
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator