Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aisfbistiaxb Structured version   Visualization version   GIF version

Theorem aisfbistiaxb 41833
Description: Given a is equivalent to F., Given b is equivalent to T., there exists a proof for a-xor-b. (Contributed by Jarvin Udandy, 31-Aug-2016.)
Hypotheses
Ref Expression
aisfbistiaxb.1 (𝜑 ↔ ⊥)
aisfbistiaxb.2 (𝜓 ↔ ⊤)
Assertion
Ref Expression
aisfbistiaxb (𝜑𝜓)

Proof of Theorem aisfbistiaxb
StepHypRef Expression
1 aisfbistiaxb.1 . . 3 (𝜑 ↔ ⊥)
21aisfina 41811 . 2 ¬ 𝜑
3 aisfbistiaxb.2 . . 3 (𝜓 ↔ ⊤)
43aistia 41810 . 2 𝜓
52, 4abnotataxb 41829 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 198  wxo 1634  wtru 1654  wfal 1666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-xor 1635  df-tru 1657  df-fal 1667
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator