| Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aisfina | Structured version Visualization version GIF version | ||
| Description: Given a is equivalent to ⊥, there exists a proof for not a. (Contributed by Jarvin Udandy, 30-Aug-2016.) |
| Ref | Expression |
|---|---|
| aisfina.1 | ⊢ (𝜑 ↔ ⊥) |
| Ref | Expression |
|---|---|
| aisfina | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aisfina.1 | . 2 ⊢ (𝜑 ↔ ⊥) | |
| 2 | nbfal 1554 | . 2 ⊢ (¬ 𝜑 ↔ (𝜑 ↔ ⊥)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ⊥wfal 1551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-tru 1542 df-fal 1552 |
| This theorem is referenced by: aistbisfiaxb 46877 aisfbistiaxb 46878 aifftbifffaibif 46879 aifftbifffaibifff 46880 atnaiana 46881 dandysum2p2e4 46956 |
| Copyright terms: Public domain | W3C validator |