Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alcoms | Structured version Visualization version GIF version |
Description: Swap quantifiers in an antecedent. (Contributed by NM, 11-May-1993.) |
Ref | Expression |
---|---|
alcoms.1 | ⊢ (∀𝑥∀𝑦𝜑 → 𝜓) |
Ref | Expression |
---|---|
alcoms | ⊢ (∀𝑦∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-11 2154 | . 2 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
2 | alcoms.1 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → 𝜓) | |
3 | 1, 2 | syl 17 | 1 ⊢ (∀𝑦∀𝑥𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-11 2154 |
This theorem is referenced by: cbv2h 2406 mo3 2564 bj-nfalt 34893 bj-cbv3ta 34968 bj-cbv2hv 34979 wl-equsal1i 35702 wl-mo3t 35731 axc11n-16 36952 axc11next 42024 |
Copyright terms: Public domain | W3C validator |