MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alcoms Structured version   Visualization version   GIF version

Theorem alcoms 2155
Description: Swap quantifiers in an antecedent. (Contributed by NM, 11-May-1993.)
Hypothesis
Ref Expression
alcoms.1 (∀𝑥𝑦𝜑𝜓)
Assertion
Ref Expression
alcoms (∀𝑦𝑥𝜑𝜓)

Proof of Theorem alcoms
StepHypRef Expression
1 ax-11 2154 . 2 (∀𝑦𝑥𝜑 → ∀𝑥𝑦𝜑)
2 alcoms.1 . 2 (∀𝑥𝑦𝜑𝜓)
31, 2syl 17 1 (∀𝑦𝑥𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-11 2154
This theorem is referenced by:  cbv2h  2406  mo3  2564  bj-nfalt  34893  bj-cbv3ta  34968  bj-cbv2hv  34979  wl-equsal1i  35702  wl-mo3t  35731  axc11n-16  36952  axc11next  42024
  Copyright terms: Public domain W3C validator