| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alcoms | Structured version Visualization version GIF version | ||
| Description: Swap quantifiers in an antecedent. (Contributed by NM, 11-May-1993.) |
| Ref | Expression |
|---|---|
| alcoms.1 | ⊢ (∀𝑥∀𝑦𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| alcoms | ⊢ (∀𝑦∀𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-11 2157 | . 2 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
| 2 | alcoms.1 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → 𝜓) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (∀𝑦∀𝑥𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-11 2157 |
| This theorem is referenced by: cbv2h 2411 mo3 2564 bj-nfalt 36712 bj-cbv3ta 36787 bj-cbv2hv 36798 wl-equsal1i 37545 wl-mo3t 37577 axc11n-16 38939 axc11next 44425 |
| Copyright terms: Public domain | W3C validator |