| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ax-c16 38894 | . . . 4
⊢
(∀𝑥 𝑥 = 𝑧 → (𝑥 = 𝑤 → ∀𝑥 𝑥 = 𝑤)) | 
| 2 | 1 | alrimiv 1926 | . . 3
⊢
(∀𝑥 𝑥 = 𝑧 → ∀𝑤(𝑥 = 𝑤 → ∀𝑥 𝑥 = 𝑤)) | 
| 3 | 2 | axc4i-o 38900 | . 2
⊢
(∀𝑥 𝑥 = 𝑧 → ∀𝑥∀𝑤(𝑥 = 𝑤 → ∀𝑥 𝑥 = 𝑤)) | 
| 4 |  | equequ1 2023 | . . . . . 6
⊢ (𝑥 = 𝑧 → (𝑥 = 𝑤 ↔ 𝑧 = 𝑤)) | 
| 5 | 4 | cbvalvw 2034 | . . . . . . 7
⊢
(∀𝑥 𝑥 = 𝑤 ↔ ∀𝑧 𝑧 = 𝑤) | 
| 6 | 5 | a1i 11 | . . . . . 6
⊢ (𝑥 = 𝑧 → (∀𝑥 𝑥 = 𝑤 ↔ ∀𝑧 𝑧 = 𝑤)) | 
| 7 | 4, 6 | imbi12d 344 | . . . . 5
⊢ (𝑥 = 𝑧 → ((𝑥 = 𝑤 → ∀𝑥 𝑥 = 𝑤) ↔ (𝑧 = 𝑤 → ∀𝑧 𝑧 = 𝑤))) | 
| 8 | 7 | albidv 1919 | . . . 4
⊢ (𝑥 = 𝑧 → (∀𝑤(𝑥 = 𝑤 → ∀𝑥 𝑥 = 𝑤) ↔ ∀𝑤(𝑧 = 𝑤 → ∀𝑧 𝑧 = 𝑤))) | 
| 9 | 8 | cbvalvw 2034 | . . 3
⊢
(∀𝑥∀𝑤(𝑥 = 𝑤 → ∀𝑥 𝑥 = 𝑤) ↔ ∀𝑧∀𝑤(𝑧 = 𝑤 → ∀𝑧 𝑧 = 𝑤)) | 
| 10 | 9 | biimpi 216 | . 2
⊢
(∀𝑥∀𝑤(𝑥 = 𝑤 → ∀𝑥 𝑥 = 𝑤) → ∀𝑧∀𝑤(𝑧 = 𝑤 → ∀𝑧 𝑧 = 𝑤)) | 
| 11 |  | nfa1-o 38917 | . . . . . . 7
⊢
Ⅎ𝑧∀𝑧 𝑧 = 𝑤 | 
| 12 | 11 | 19.23 2210 | . . . . . 6
⊢
(∀𝑧(𝑧 = 𝑤 → ∀𝑧 𝑧 = 𝑤) ↔ (∃𝑧 𝑧 = 𝑤 → ∀𝑧 𝑧 = 𝑤)) | 
| 13 | 12 | albii 1818 | . . . . 5
⊢
(∀𝑤∀𝑧(𝑧 = 𝑤 → ∀𝑧 𝑧 = 𝑤) ↔ ∀𝑤(∃𝑧 𝑧 = 𝑤 → ∀𝑧 𝑧 = 𝑤)) | 
| 14 |  | ax6ev 1968 | . . . . . . . 8
⊢
∃𝑧 𝑧 = 𝑤 | 
| 15 |  | pm2.27 42 | . . . . . . . 8
⊢
(∃𝑧 𝑧 = 𝑤 → ((∃𝑧 𝑧 = 𝑤 → ∀𝑧 𝑧 = 𝑤) → ∀𝑧 𝑧 = 𝑤)) | 
| 16 | 14, 15 | ax-mp 5 | . . . . . . 7
⊢
((∃𝑧 𝑧 = 𝑤 → ∀𝑧 𝑧 = 𝑤) → ∀𝑧 𝑧 = 𝑤) | 
| 17 | 16 | alimi 1810 | . . . . . 6
⊢
(∀𝑤(∃𝑧 𝑧 = 𝑤 → ∀𝑧 𝑧 = 𝑤) → ∀𝑤∀𝑧 𝑧 = 𝑤) | 
| 18 |  | equequ2 2024 | . . . . . . . . 9
⊢ (𝑤 = 𝑥 → (𝑧 = 𝑤 ↔ 𝑧 = 𝑥)) | 
| 19 | 18 | spv 2397 | . . . . . . . 8
⊢
(∀𝑤 𝑧 = 𝑤 → 𝑧 = 𝑥) | 
| 20 | 19 | sps-o 38910 | . . . . . . 7
⊢
(∀𝑧∀𝑤 𝑧 = 𝑤 → 𝑧 = 𝑥) | 
| 21 | 20 | alcoms 2157 | . . . . . 6
⊢
(∀𝑤∀𝑧 𝑧 = 𝑤 → 𝑧 = 𝑥) | 
| 22 | 17, 21 | syl 17 | . . . . 5
⊢
(∀𝑤(∃𝑧 𝑧 = 𝑤 → ∀𝑧 𝑧 = 𝑤) → 𝑧 = 𝑥) | 
| 23 | 13, 22 | sylbi 217 | . . . 4
⊢
(∀𝑤∀𝑧(𝑧 = 𝑤 → ∀𝑧 𝑧 = 𝑤) → 𝑧 = 𝑥) | 
| 24 | 23 | alcoms 2157 | . . 3
⊢
(∀𝑧∀𝑤(𝑧 = 𝑤 → ∀𝑧 𝑧 = 𝑤) → 𝑧 = 𝑥) | 
| 25 | 24 | axc4i-o 38900 | . 2
⊢
(∀𝑧∀𝑤(𝑧 = 𝑤 → ∀𝑧 𝑧 = 𝑤) → ∀𝑧 𝑧 = 𝑥) | 
| 26 | 3, 10, 25 | 3syl 18 | 1
⊢
(∀𝑥 𝑥 = 𝑧 → ∀𝑧 𝑧 = 𝑥) |