Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alcom | Structured version Visualization version GIF version |
Description: Theorem 19.5 of [Margaris] p. 89. (Contributed by NM, 30-Jun-1993.) |
Ref | Expression |
---|---|
alcom | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-11 2154 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | |
2 | ax-11 2154 | . 2 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
3 | 1, 2 | impbii 208 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-11 2154 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: alrot3 2157 sbal 2159 sbcom2 2161 excom 2162 nfa2 2170 aaan 2328 sb8v 2350 sb8f 2351 sbnf2 2356 sbal1 2533 sbal2 2534 2mo2 2649 nfra2w 3154 nfra2wOLD 3155 ralcom4 3164 ralcom4OLD 3165 ralcom 3166 ralcomf 3283 moelOLD 3359 unissb 4873 dfiin2g 4962 dftr5 5194 cotrg 6016 cnvsym 6019 dffun2OLD 6444 fun11 6508 aceq1 9873 isch2 29585 dfon2lem8 33766 bj-hbaeb 35002 wl-sbcom2d 35716 wl-sbalnae 35717 wl-2spsbbi 35720 cocossss 36559 cossssid3 36587 trcoss2 36602 dford4 40851 elmapintrab 41184 undmrnresiss 41212 cnvssco 41214 elintima 41261 relexp0eq 41309 dfhe3 41383 dffrege115 41586 hbexg 42176 hbexgVD 42526 dfich2 44910 ichcom 44911 |
Copyright terms: Public domain | W3C validator |