| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alcom | Structured version Visualization version GIF version | ||
| Description: Theorem 19.5 of [Margaris] p. 89. Use its weak version alcomw 2045 when it allows to avoid dependence on ax-11 2158. (Contributed by NM, 30-Jun-1993.) |
| Ref | Expression |
|---|---|
| alcom | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-11 2158 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | |
| 2 | ax-11 2158 | . 2 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-11 2158 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: alrot3 2161 excom 2163 sbal 2170 sbcom2 2174 nfa2 2177 aaan 2331 sb8v 2351 sb8f 2352 sbnf2 2356 sbal1 2526 sbal2 2527 2mo2 2640 ralcom4 3255 ralcom 3257 ralcomf 3268 sbccomlem 3823 dfiin2g 4984 fun11 6560 aceq1 10030 isch2 31185 dfon2lem8 35766 bj-hbaeb 36795 wl-sb9v 37525 wl-sbcom2d 37537 wl-sbalnae 37538 wl-2spsbbi 37541 cocossss 38415 cossssid3 38448 trcoss2 38463 dford4 43005 unielss 43194 elmapintrab 43552 undmrnresiss 43580 cnvssco 43582 elintima 43629 relexp0eq 43677 dfhe3 43751 dffrege115 43954 hbexg 44533 hbexgVD 44882 dfich2 47446 ichcom 47447 |
| Copyright terms: Public domain | W3C validator |