![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alcom | Structured version Visualization version GIF version |
Description: Theorem 19.5 of [Margaris] p. 89. Use its weak version alcomw 2044 when it allows to avoid dependence on ax-11 2158. (Contributed by NM, 30-Jun-1993.) |
Ref | Expression |
---|---|
alcom | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-11 2158 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | |
2 | ax-11 2158 | . 2 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
3 | 1, 2 | impbii 209 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-11 2158 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: alrot3 2161 excom 2163 sbal 2170 sbcom2 2174 nfa2 2177 aaan 2337 sb8v 2358 sb8f 2359 sbnf2 2364 sbal1 2536 sbal2 2537 2mo2 2650 ralcom4 3292 ralcom4OLD 3293 ralcom 3295 nfra2wOLD 3306 ralcomf 3308 moelOLD 3413 sbccomlem 3891 unissbOLD 4964 dfiin2g 5055 dftr5OLD 5288 cotrgOLD 6140 cotrgOLDOLD 6141 cnvsymOLD 6145 cnvsymOLDOLD 6146 dffun2OLD 6584 dffun2OLDOLD 6585 fun11 6652 aceq1 10186 isch2 31255 dfon2lem8 35754 bj-hbaeb 36785 wl-sb9v 37503 wl-sbcom2d 37515 wl-sbalnae 37516 wl-2spsbbi 37519 cocossss 38392 cossssid3 38425 trcoss2 38440 dford4 42986 unielss 43179 elmapintrab 43538 undmrnresiss 43566 cnvssco 43568 elintima 43615 relexp0eq 43663 dfhe3 43737 dffrege115 43940 hbexg 44527 hbexgVD 44877 dfich2 47332 ichcom 47333 |
Copyright terms: Public domain | W3C validator |