| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alcom | Structured version Visualization version GIF version | ||
| Description: Theorem 19.5 of [Margaris] p. 89. Use its weak version alcomw 2045 when it allows to avoid dependence on ax-11 2158. (Contributed by NM, 30-Jun-1993.) |
| Ref | Expression |
|---|---|
| alcom | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-11 2158 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | |
| 2 | ax-11 2158 | . 2 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-11 2158 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: alrot3 2161 excom 2163 sbal 2170 sbcom2 2174 nfa2 2177 aaan 2331 sb8v 2351 sb8f 2352 sbnf2 2356 sbal1 2526 sbal2 2527 2mo2 2640 ralcom4 3263 ralcom 3265 ralcomf 3276 sbccomlem 3832 unissbOLD 4904 dfiin2g 4996 dftr5OLD 5219 cotrgOLD 6081 cotrgOLDOLD 6082 cnvsymOLD 6086 cnvsymOLDOLD 6087 dffun2OLD 6522 dffun2OLDOLD 6523 fun11 6590 aceq1 10070 isch2 31152 dfon2lem8 35778 bj-hbaeb 36807 wl-sb9v 37537 wl-sbcom2d 37549 wl-sbalnae 37550 wl-2spsbbi 37553 cocossss 38427 cossssid3 38460 trcoss2 38475 dford4 43018 unielss 43207 elmapintrab 43565 undmrnresiss 43593 cnvssco 43595 elintima 43642 relexp0eq 43690 dfhe3 43764 dffrege115 43967 hbexg 44546 hbexgVD 44895 dfich2 47459 ichcom 47460 |
| Copyright terms: Public domain | W3C validator |