| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alcom | Structured version Visualization version GIF version | ||
| Description: Theorem 19.5 of [Margaris] p. 89. Use its weak version alcomw 2044 when it allows to avoid dependence on ax-11 2157. (Contributed by NM, 30-Jun-1993.) |
| Ref | Expression |
|---|---|
| alcom | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-11 2157 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | |
| 2 | ax-11 2157 | . 2 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-11 2157 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: alrot3 2160 excom 2162 sbal 2169 sbcom2 2173 nfa2 2176 aaan 2332 sb8v 2354 sb8f 2355 sbnf2 2360 sbal1 2532 sbal2 2533 2mo2 2646 ralcom4 3268 ralcom 3270 ralcomf 3282 moelOLD 3384 sbccomlem 3844 unissbOLD 4916 dfiin2g 5008 dftr5OLD 5234 cotrgOLD 6097 cotrgOLDOLD 6098 cnvsymOLD 6102 cnvsymOLDOLD 6103 dffun2OLD 6542 dffun2OLDOLD 6543 fun11 6610 aceq1 10131 isch2 31204 dfon2lem8 35808 bj-hbaeb 36837 wl-sb9v 37567 wl-sbcom2d 37579 wl-sbalnae 37580 wl-2spsbbi 37583 cocossss 38454 cossssid3 38487 trcoss2 38502 dford4 43053 unielss 43242 elmapintrab 43600 undmrnresiss 43628 cnvssco 43630 elintima 43677 relexp0eq 43725 dfhe3 43799 dffrege115 44002 hbexg 44581 hbexgVD 44930 dfich2 47472 ichcom 47473 |
| Copyright terms: Public domain | W3C validator |