| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alcom | Structured version Visualization version GIF version | ||
| Description: Theorem 19.5 of [Margaris] p. 89. Use its weak version alcomw 2045 when it allows to avoid dependence on ax-11 2158. (Contributed by NM, 30-Jun-1993.) |
| Ref | Expression |
|---|---|
| alcom | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-11 2158 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | |
| 2 | ax-11 2158 | . 2 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-11 2158 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: alrot3 2161 excom 2163 sbal 2170 sbcom2 2174 nfa2 2177 aaan 2331 sb8v 2351 sb8f 2352 sbnf2 2357 sbal1 2527 sbal2 2528 2mo2 2641 ralcom4 3264 ralcom 3266 ralcomf 3278 sbccomlem 3835 unissbOLD 4907 dfiin2g 4999 dftr5OLD 5222 cotrgOLD 6084 cotrgOLDOLD 6085 cnvsymOLD 6089 cnvsymOLDOLD 6090 dffun2OLD 6525 dffun2OLDOLD 6526 fun11 6593 aceq1 10077 isch2 31159 dfon2lem8 35785 bj-hbaeb 36814 wl-sb9v 37544 wl-sbcom2d 37556 wl-sbalnae 37557 wl-2spsbbi 37560 cocossss 38434 cossssid3 38467 trcoss2 38482 dford4 43025 unielss 43214 elmapintrab 43572 undmrnresiss 43600 cnvssco 43602 elintima 43649 relexp0eq 43697 dfhe3 43771 dffrege115 43974 hbexg 44553 hbexgVD 44902 dfich2 47463 ichcom 47464 |
| Copyright terms: Public domain | W3C validator |