Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alcom | Structured version Visualization version GIF version |
Description: Theorem 19.5 of [Margaris] p. 89. (Contributed by NM, 30-Jun-1993.) |
Ref | Expression |
---|---|
alcom | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-11 2156 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | |
2 | ax-11 2156 | . 2 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
3 | 1, 2 | impbii 208 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-11 2156 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: alrot3 2159 sbal 2161 sbcom2 2163 excom 2164 nfa2 2172 sbnf2 2356 sbal1 2533 sbal2 2534 2mo2 2649 nfra2w 3151 nfra2wOLD 3152 ralcom4 3161 ralcom4OLD 3162 ralcom 3280 ralcomf 3282 moel 3349 unissb 4870 dfiin2g 4958 dftr5 5190 cotrg 6005 cnvsym 6008 dffun2 6428 fun11 6492 aceq1 9804 isch2 29486 dfon2lem8 33672 bj-hbaeb 34929 wl-sbcom2d 35643 wl-sbalnae 35644 wl-2spsbbi 35647 cocossss 36486 cossssid3 36514 trcoss2 36529 dford4 40767 elmapintrab 41073 undmrnresiss 41101 cnvssco 41103 elintima 41150 relexp0eq 41198 dfhe3 41272 dffrege115 41475 hbexg 42065 hbexgVD 42415 dfich2 44798 ichcom 44799 |
Copyright terms: Public domain | W3C validator |