Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alcom | Structured version Visualization version GIF version |
Description: Theorem 19.5 of [Margaris] p. 89. (Contributed by NM, 30-Jun-1993.) |
Ref | Expression |
---|---|
alcom | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-11 2154 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | |
2 | ax-11 2154 | . 2 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
3 | 1, 2 | impbii 208 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-11 2154 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: alrot3 2157 sbal 2159 sbcom2 2161 excom 2162 nfa2 2170 aaan 2328 sb8v 2350 sb8f 2351 sbnf2 2356 sbal1 2533 sbal2 2534 2mo2 2649 nfra2w 3153 nfra2wOLD 3154 ralcom4 3163 ralcom4OLD 3164 ralcom 3165 ralcomf 3282 moelOLD 3358 unissb 4875 dfiin2g 4964 dftr5 5196 cotrg 6018 cnvsym 6021 dffun2OLD 6446 fun11 6510 aceq1 9871 isch2 29582 dfon2lem8 33763 bj-hbaeb 34999 wl-sbcom2d 35713 wl-sbalnae 35714 wl-2spsbbi 35717 cocossss 36556 cossssid3 36584 trcoss2 36599 dford4 40848 elmapintrab 41154 undmrnresiss 41182 cnvssco 41184 elintima 41231 relexp0eq 41279 dfhe3 41353 dffrege115 41556 hbexg 42146 hbexgVD 42496 dfich2 44877 ichcom 44878 |
Copyright terms: Public domain | W3C validator |