| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alcom | Structured version Visualization version GIF version | ||
| Description: Theorem 19.5 of [Margaris] p. 89. Use its weak version alcomw 2046 when it allows to avoid dependence on ax-11 2162. (Contributed by NM, 30-Jun-1993.) |
| Ref | Expression |
|---|---|
| alcom | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-11 2162 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | |
| 2 | ax-11 2162 | . 2 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-11 2162 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: alrot3 2165 excom 2167 sbal 2174 sbcom2 2178 nfa2 2181 aaan 2335 sb8v 2355 sb8f 2356 sbnf2 2360 sbal1 2530 sbal2 2531 2mo2 2644 ralcom4 3259 ralcom 3261 ralcomf 3271 sbccomlem 3816 dfiin2g 4983 fun11 6563 aceq1 10019 isch2 31224 dfon2lem8 35904 bj-hbaeb 36936 wl-sb9v 37666 wl-sbcom2d 37678 wl-sbalnae 37679 wl-2spsbbi 37682 cocossss 38611 cossssid3 38644 trcoss2 38659 dford4 43186 unielss 43375 elmapintrab 43733 undmrnresiss 43761 cnvssco 43763 elintima 43810 relexp0eq 43858 dfhe3 43932 dffrege115 44135 hbexg 44713 hbexgVD 45062 dfich2 47620 ichcom 47621 |
| Copyright terms: Public domain | W3C validator |