| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alcom | Structured version Visualization version GIF version | ||
| Description: Theorem 19.5 of [Margaris] p. 89. Use its weak version alcomw 2045 when it allows to avoid dependence on ax-11 2158. (Contributed by NM, 30-Jun-1993.) |
| Ref | Expression |
|---|---|
| alcom | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-11 2158 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | |
| 2 | ax-11 2158 | . 2 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-11 2158 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: alrot3 2161 excom 2163 sbal 2170 sbcom2 2174 nfa2 2177 aaan 2331 sb8v 2351 sb8f 2352 sbnf2 2356 sbal1 2526 sbal2 2527 2mo2 2640 ralcom4 3261 ralcom 3263 ralcomf 3274 sbccomlem 3829 unissbOLD 4900 dfiin2g 4991 dftr5OLD 5214 cotrgOLD 6070 cnvsymOLD 6074 cnvsymOLDOLD 6075 dffun2OLD 6510 fun11 6574 aceq1 10046 isch2 31125 dfon2lem8 35751 bj-hbaeb 36780 wl-sb9v 37510 wl-sbcom2d 37522 wl-sbalnae 37523 wl-2spsbbi 37526 cocossss 38400 cossssid3 38433 trcoss2 38448 dford4 42991 unielss 43180 elmapintrab 43538 undmrnresiss 43566 cnvssco 43568 elintima 43615 relexp0eq 43663 dfhe3 43737 dffrege115 43940 hbexg 44519 hbexgVD 44868 dfich2 47432 ichcom 47433 |
| Copyright terms: Public domain | W3C validator |