![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alcom | Structured version Visualization version GIF version |
Description: Theorem 19.5 of [Margaris] p. 89. Use its weak version alcomw 2041 when it allows to avoid dependence on ax-11 2154. (Contributed by NM, 30-Jun-1993.) |
Ref | Expression |
---|---|
alcom | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-11 2154 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | |
2 | ax-11 2154 | . 2 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
3 | 1, 2 | impbii 209 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∀wal 1534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-11 2154 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: alrot3 2157 excom 2159 sbal 2166 sbcom2 2170 nfa2 2173 aaan 2331 sb8v 2352 sb8f 2353 sbnf2 2358 sbal1 2530 sbal2 2531 2mo2 2644 ralcom4 3283 ralcom4OLD 3284 ralcom 3286 nfra2wOLD 3297 ralcomf 3299 moelOLD 3402 sbccomlem 3877 unissbOLD 4944 dfiin2g 5036 dftr5OLD 5269 cotrgOLD 6130 cotrgOLDOLD 6131 cnvsymOLD 6135 cnvsymOLDOLD 6136 dffun2OLD 6573 dffun2OLDOLD 6574 fun11 6641 aceq1 10154 isch2 31251 dfon2lem8 35771 bj-hbaeb 36801 wl-sb9v 37529 wl-sbcom2d 37541 wl-sbalnae 37542 wl-2spsbbi 37545 cocossss 38417 cossssid3 38450 trcoss2 38465 dford4 43017 unielss 43206 elmapintrab 43565 undmrnresiss 43593 cnvssco 43595 elintima 43642 relexp0eq 43690 dfhe3 43764 dffrege115 43967 hbexg 44553 hbexgVD 44903 dfich2 47382 ichcom 47383 |
Copyright terms: Public domain | W3C validator |