| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alcom | Structured version Visualization version GIF version | ||
| Description: Theorem 19.5 of [Margaris] p. 89. Use its weak version alcomw 2046 when it allows to avoid dependence on ax-11 2160. (Contributed by NM, 30-Jun-1993.) |
| Ref | Expression |
|---|---|
| alcom | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-11 2160 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | |
| 2 | ax-11 2160 | . 2 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-11 2160 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: alrot3 2163 excom 2165 sbal 2172 sbcom2 2176 nfa2 2179 aaan 2333 sb8v 2353 sb8f 2354 sbnf2 2358 sbal1 2528 sbal2 2529 2mo2 2642 ralcom4 3258 ralcom 3260 ralcomf 3270 sbccomlem 3815 dfiin2g 4976 fun11 6550 aceq1 10003 isch2 31195 dfon2lem8 35824 bj-hbaeb 36853 wl-sb9v 37583 wl-sbcom2d 37595 wl-sbalnae 37596 wl-2spsbbi 37599 cocossss 38473 cossssid3 38506 trcoss2 38521 dford4 43062 unielss 43251 elmapintrab 43609 undmrnresiss 43637 cnvssco 43639 elintima 43686 relexp0eq 43734 dfhe3 43808 dffrege115 44011 hbexg 44589 hbexgVD 44938 dfich2 47489 ichcom 47490 |
| Copyright terms: Public domain | W3C validator |