Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbv2h | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2370. (Contributed by NM, 11-May-1993.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbv2h.1 | ⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) |
cbv2h.2 | ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) |
cbv2h.3 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
Ref | Expression |
---|---|
cbv2h | ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbv2h.1 | . . 3 ⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) | |
2 | cbv2h.2 | . . 3 ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) | |
3 | cbv2h.3 | . . . 4 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
4 | biimp 214 | . . . 4 ⊢ ((𝜓 ↔ 𝜒) → (𝜓 → 𝜒)) | |
5 | 3, 4 | syl6 35 | . . 3 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) |
6 | 1, 2, 5 | cbv1h 2403 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒)) |
7 | equcomi 2019 | . . . . 5 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
8 | biimpr 219 | . . . . 5 ⊢ ((𝜓 ↔ 𝜒) → (𝜒 → 𝜓)) | |
9 | 7, 3, 8 | syl56 36 | . . . 4 ⊢ (𝜑 → (𝑦 = 𝑥 → (𝜒 → 𝜓))) |
10 | 2, 1, 9 | cbv1h 2403 | . . 3 ⊢ (∀𝑦∀𝑥𝜑 → (∀𝑦𝜒 → ∀𝑥𝜓)) |
11 | 10 | alcoms 2154 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑦𝜒 → ∀𝑥𝜓)) |
12 | 6, 11 | impbid 211 | 1 ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-10 2136 ax-11 2153 ax-12 2170 ax-13 2370 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1781 df-nf 1785 |
This theorem is referenced by: eujustALT 2570 |
Copyright terms: Public domain | W3C validator |