|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cbv2h | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2376. (Contributed by NM, 11-May-1993.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| cbv2h.1 | ⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) | 
| cbv2h.2 | ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) | 
| cbv2h.3 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | 
| Ref | Expression | 
|---|---|
| cbv2h | ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cbv2h.1 | . . 3 ⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) | |
| 2 | cbv2h.2 | . . 3 ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) | |
| 3 | cbv2h.3 | . . . 4 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
| 4 | biimp 215 | . . . 4 ⊢ ((𝜓 ↔ 𝜒) → (𝜓 → 𝜒)) | |
| 5 | 3, 4 | syl6 35 | . . 3 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) | 
| 6 | 1, 2, 5 | cbv1h 2409 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒)) | 
| 7 | equcomi 2015 | . . . . 5 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
| 8 | biimpr 220 | . . . . 5 ⊢ ((𝜓 ↔ 𝜒) → (𝜒 → 𝜓)) | |
| 9 | 7, 3, 8 | syl56 36 | . . . 4 ⊢ (𝜑 → (𝑦 = 𝑥 → (𝜒 → 𝜓))) | 
| 10 | 2, 1, 9 | cbv1h 2409 | . . 3 ⊢ (∀𝑦∀𝑥𝜑 → (∀𝑦𝜒 → ∀𝑥𝜓)) | 
| 11 | 10 | alcoms 2157 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑦𝜒 → ∀𝑥𝜓)) | 
| 12 | 6, 11 | impbid 212 | 1 ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-11 2156 ax-12 2176 ax-13 2376 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-nf 1783 | 
| This theorem is referenced by: eujustALT 2571 | 
| Copyright terms: Public domain | W3C validator |