| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbv2h | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 11-May-1993.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cbv2h.1 | ⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) |
| cbv2h.2 | ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) |
| cbv2h.3 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
| Ref | Expression |
|---|---|
| cbv2h | ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbv2h.1 | . . 3 ⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) | |
| 2 | cbv2h.2 | . . 3 ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) | |
| 3 | cbv2h.3 | . . . 4 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
| 4 | biimp 215 | . . . 4 ⊢ ((𝜓 ↔ 𝜒) → (𝜓 → 𝜒)) | |
| 5 | 3, 4 | syl6 35 | . . 3 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) |
| 6 | 1, 2, 5 | cbv1h 2404 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒)) |
| 7 | equcomi 2017 | . . . . 5 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
| 8 | biimpr 220 | . . . . 5 ⊢ ((𝜓 ↔ 𝜒) → (𝜒 → 𝜓)) | |
| 9 | 7, 3, 8 | syl56 36 | . . . 4 ⊢ (𝜑 → (𝑦 = 𝑥 → (𝜒 → 𝜓))) |
| 10 | 2, 1, 9 | cbv1h 2404 | . . 3 ⊢ (∀𝑦∀𝑥𝜑 → (∀𝑦𝜒 → ∀𝑥𝜓)) |
| 11 | 10 | alcoms 2159 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑦𝜒 → ∀𝑥𝜓)) |
| 12 | 6, 11 | impbid 212 | 1 ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: eujustALT 2566 |
| Copyright terms: Public domain | W3C validator |