| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | nfmo1 2556 | . . 3
⊢
Ⅎ𝑥∃*𝑥𝜑 | 
| 2 |  | mo3.nf | . . . . 5
⊢
Ⅎ𝑦𝜑 | 
| 3 | 2 | nfmov 2559 | . . . 4
⊢
Ⅎ𝑦∃*𝑥𝜑 | 
| 4 |  | df-mo 2539 | . . . . 5
⊢
(∃*𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧)) | 
| 5 |  | sp 2182 | . . . . . . . 8
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑧) → (𝜑 → 𝑥 = 𝑧)) | 
| 6 |  | spsbim 2071 | . . . . . . . . 9
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑧) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝑥 = 𝑧)) | 
| 7 |  | equsb3 2102 | . . . . . . . . 9
⊢ ([𝑦 / 𝑥]𝑥 = 𝑧 ↔ 𝑦 = 𝑧) | 
| 8 | 6, 7 | imbitrdi 251 | . . . . . . . 8
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑧) → ([𝑦 / 𝑥]𝜑 → 𝑦 = 𝑧)) | 
| 9 | 5, 8 | anim12d 609 | . . . . . . 7
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑧) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑧))) | 
| 10 |  | equtr2 2025 | . . . . . . 7
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑧) → 𝑥 = 𝑦) | 
| 11 | 9, 10 | syl6 35 | . . . . . 6
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑧) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) | 
| 12 | 11 | exlimiv 1929 | . . . . 5
⊢
(∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) | 
| 13 | 4, 12 | sylbi 217 | . . . 4
⊢
(∃*𝑥𝜑 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) | 
| 14 | 3, 13 | alrimi 2212 | . . 3
⊢
(∃*𝑥𝜑 → ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) | 
| 15 | 1, 14 | alrimi 2212 | . 2
⊢
(∃*𝑥𝜑 → ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) | 
| 16 |  | nfs1v 2155 | . . . . . . . 8
⊢
Ⅎ𝑥[𝑦 / 𝑥]𝜑 | 
| 17 |  | pm3.21 471 | . . . . . . . . 9
⊢ ([𝑦 / 𝑥]𝜑 → (𝜑 → (𝜑 ∧ [𝑦 / 𝑥]𝜑))) | 
| 18 | 17 | imim1d 82 | . . . . . . . 8
⊢ ([𝑦 / 𝑥]𝜑 → (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → (𝜑 → 𝑥 = 𝑦))) | 
| 19 | 16, 18 | alimd 2211 | . . . . . . 7
⊢ ([𝑦 / 𝑥]𝜑 → (∀𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∀𝑥(𝜑 → 𝑥 = 𝑦))) | 
| 20 | 19 | com12 32 | . . . . . 6
⊢
(∀𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝜑 → 𝑥 = 𝑦))) | 
| 21 | 20 | aleximi 1831 | . . . . 5
⊢
(∀𝑦∀𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → (∃𝑦[𝑦 / 𝑥]𝜑 → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) | 
| 22 | 2 | sb8ef 2357 | . . . . 5
⊢
(∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) | 
| 23 | 2 | mof 2562 | . . . . 5
⊢
(∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | 
| 24 | 21, 22, 23 | 3imtr4g 296 | . . . 4
⊢
(∀𝑦∀𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → (∃𝑥𝜑 → ∃*𝑥𝜑)) | 
| 25 |  | moabs 2542 | . . . 4
⊢
(∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃*𝑥𝜑)) | 
| 26 | 24, 25 | sylibr 234 | . . 3
⊢
(∀𝑦∀𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃*𝑥𝜑) | 
| 27 | 26 | alcoms 2157 | . 2
⊢
(∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃*𝑥𝜑) | 
| 28 | 15, 27 | impbii 209 | 1
⊢
(∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |