Step | Hyp | Ref
| Expression |
1 | | nfmo1 2557 |
. . 3
⊢
Ⅎ𝑥∃*𝑥𝜑 |
2 | | mo3.nf |
. . . . 5
⊢
Ⅎ𝑦𝜑 |
3 | 2 | nfmov 2560 |
. . . 4
⊢
Ⅎ𝑦∃*𝑥𝜑 |
4 | | df-mo 2540 |
. . . . 5
⊢
(∃*𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧)) |
5 | | sp 2176 |
. . . . . . . 8
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑧) → (𝜑 → 𝑥 = 𝑧)) |
6 | | spsbim 2075 |
. . . . . . . . 9
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑧) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝑥 = 𝑧)) |
7 | | equsb3 2101 |
. . . . . . . . 9
⊢ ([𝑦 / 𝑥]𝑥 = 𝑧 ↔ 𝑦 = 𝑧) |
8 | 6, 7 | syl6ib 250 |
. . . . . . . 8
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑧) → ([𝑦 / 𝑥]𝜑 → 𝑦 = 𝑧)) |
9 | 5, 8 | anim12d 609 |
. . . . . . 7
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑧) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑧))) |
10 | | equtr2 2030 |
. . . . . . 7
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑧) → 𝑥 = 𝑦) |
11 | 9, 10 | syl6 35 |
. . . . . 6
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑧) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
12 | 11 | exlimiv 1933 |
. . . . 5
⊢
(∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
13 | 4, 12 | sylbi 216 |
. . . 4
⊢
(∃*𝑥𝜑 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
14 | 3, 13 | alrimi 2206 |
. . 3
⊢
(∃*𝑥𝜑 → ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
15 | 1, 14 | alrimi 2206 |
. 2
⊢
(∃*𝑥𝜑 → ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
16 | | nfs1v 2153 |
. . . . . . . 8
⊢
Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
17 | | pm3.21 472 |
. . . . . . . . 9
⊢ ([𝑦 / 𝑥]𝜑 → (𝜑 → (𝜑 ∧ [𝑦 / 𝑥]𝜑))) |
18 | 17 | imim1d 82 |
. . . . . . . 8
⊢ ([𝑦 / 𝑥]𝜑 → (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → (𝜑 → 𝑥 = 𝑦))) |
19 | 16, 18 | alimd 2205 |
. . . . . . 7
⊢ ([𝑦 / 𝑥]𝜑 → (∀𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∀𝑥(𝜑 → 𝑥 = 𝑦))) |
20 | 19 | com12 32 |
. . . . . 6
⊢
(∀𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝜑 → 𝑥 = 𝑦))) |
21 | 20 | aleximi 1834 |
. . . . 5
⊢
(∀𝑦∀𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → (∃𝑦[𝑦 / 𝑥]𝜑 → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
22 | 2 | sb8ef 2353 |
. . . . 5
⊢
(∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) |
23 | 2 | mof 2563 |
. . . . 5
⊢
(∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
24 | 21, 22, 23 | 3imtr4g 296 |
. . . 4
⊢
(∀𝑦∀𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → (∃𝑥𝜑 → ∃*𝑥𝜑)) |
25 | | moabs 2543 |
. . . 4
⊢
(∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃*𝑥𝜑)) |
26 | 24, 25 | sylibr 233 |
. . 3
⊢
(∀𝑦∀𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃*𝑥𝜑) |
27 | 26 | alcoms 2155 |
. 2
⊢
(∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃*𝑥𝜑) |
28 | 15, 27 | impbii 208 |
1
⊢
(∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |