MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mo3 Structured version   Visualization version   GIF version

Theorem mo3 2628
Description: Alternate definition of the at-most-one quantifier. Definition of [BellMachover] p. 460, except that definition has the side condition that 𝑦 not occur in 𝜑 in place of our hypothesis. (Contributed by NM, 8-Mar-1995.) (Proof shortened by Wolf Lammen, 18-Aug-2019.)
Hypothesis
Ref Expression
mo3.1 𝑦𝜑
Assertion
Ref Expression
mo3 (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem mo3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfmo1 2570 . . 3 𝑥∃*𝑥𝜑
2 mo3.1 . . . . 5 𝑦𝜑
32nfmo 2579 . . . 4 𝑦∃*𝑥𝜑
4 df-mo 2565 . . . . 5 (∃*𝑥𝜑 ↔ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
5 sp 2215 . . . . . . . 8 (∀𝑥(𝜑𝑥 = 𝑧) → (𝜑𝑥 = 𝑧))
6 spsbim 2485 . . . . . . . . 9 (∀𝑥(𝜑𝑥 = 𝑧) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝑥 = 𝑧))
7 equsb3 2524 . . . . . . . . 9 ([𝑦 / 𝑥]𝑥 = 𝑧𝑦 = 𝑧)
86, 7syl6ib 242 . . . . . . . 8 (∀𝑥(𝜑𝑥 = 𝑧) → ([𝑦 / 𝑥]𝜑𝑦 = 𝑧))
95, 8anim12d 602 . . . . . . 7 (∀𝑥(𝜑𝑥 = 𝑧) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → (𝑥 = 𝑧𝑦 = 𝑧)))
10 equtr2 2124 . . . . . . 7 ((𝑥 = 𝑧𝑦 = 𝑧) → 𝑥 = 𝑦)
119, 10syl6 35 . . . . . 6 (∀𝑥(𝜑𝑥 = 𝑧) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
1211exlimiv 2025 . . . . 5 (∃𝑧𝑥(𝜑𝑥 = 𝑧) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
134, 12sylbi 208 . . . 4 (∃*𝑥𝜑 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
143, 13alrimi 2246 . . 3 (∃*𝑥𝜑 → ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
151, 14alrimi 2246 . 2 (∃*𝑥𝜑 → ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
16 nfs1v 2287 . . . . . . . 8 𝑥[𝑦 / 𝑥]𝜑
17 pm3.21 463 . . . . . . . . 9 ([𝑦 / 𝑥]𝜑 → (𝜑 → (𝜑 ∧ [𝑦 / 𝑥]𝜑)))
1817imim1d 82 . . . . . . . 8 ([𝑦 / 𝑥]𝜑 → (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → (𝜑𝑥 = 𝑦)))
1916, 18alimd 2245 . . . . . . 7 ([𝑦 / 𝑥]𝜑 → (∀𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦)))
2019com12 32 . . . . . 6 (∀𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝜑𝑥 = 𝑦)))
2120aleximi 1926 . . . . 5 (∀𝑦𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → (∃𝑦[𝑦 / 𝑥]𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
222sb8e 2516 . . . . 5 (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)
232mof 2571 . . . . 5 (∃*𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
2421, 22, 233imtr4g 287 . . . 4 (∀𝑦𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → (∃𝑥𝜑 → ∃*𝑥𝜑))
25 moabs 2575 . . . 4 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃*𝑥𝜑))
2624, 25sylibr 225 . . 3 (∀𝑦𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃*𝑥𝜑)
2726alcoms 2199 . 2 (∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃*𝑥𝜑)
2815, 27impbii 200 1 (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wal 1650  wex 1874  wnf 1878  [wsb 2062  ∃*wmo 2563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565
This theorem is referenced by:  mo  2629  eu2  2630  mo4f  2637  2mo  2673  rmo3f  3562  rmo3  3686  isarep2  6156  mo5f  29780  bnj580  31431  pm14.12  39295
  Copyright terms: Public domain W3C validator