Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nfalt Structured version   Visualization version   GIF version

Theorem bj-nfalt 36755
Description: Closed form of nfal 2324. (Contributed by BJ, 2-May-2019.)
Assertion
Ref Expression
bj-nfalt (∀𝑥𝑦𝜑 → Ⅎ𝑦𝑥𝜑)

Proof of Theorem bj-nfalt
StepHypRef Expression
1 bj-hbalt 36725 . . . 4 (∀𝑥(𝜑 → ∀𝑦𝜑) → (∀𝑥𝜑 → ∀𝑦𝑥𝜑))
21alimi 1812 . . 3 (∀𝑦𝑥(𝜑 → ∀𝑦𝜑) → ∀𝑦(∀𝑥𝜑 → ∀𝑦𝑥𝜑))
32alcoms 2161 . 2 (∀𝑥𝑦(𝜑 → ∀𝑦𝜑) → ∀𝑦(∀𝑥𝜑 → ∀𝑦𝑥𝜑))
4 nf5 2284 . . 3 (Ⅎ𝑦𝜑 ↔ ∀𝑦(𝜑 → ∀𝑦𝜑))
54albii 1820 . 2 (∀𝑥𝑦𝜑 ↔ ∀𝑥𝑦(𝜑 → ∀𝑦𝜑))
6 nf5 2284 . 2 (Ⅎ𝑦𝑥𝜑 ↔ ∀𝑦(∀𝑥𝜑 → ∀𝑦𝑥𝜑))
73, 5, 63imtr4i 292 1 (∀𝑥𝑦𝜑 → Ⅎ𝑦𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  wnf 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-10 2144  ax-11 2160  ax-12 2180
This theorem depends on definitions:  df-bi 207  df-or 848  df-ex 1781  df-nf 1785
This theorem is referenced by:  bj-dvelimdv1  36896
  Copyright terms: Public domain W3C validator