|   | Mathbox for BJ | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-cbv2hv | Structured version Visualization version GIF version | ||
| Description: Version of cbv2h 2411 with a disjoint variable condition, which does not require ax-13 2377. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) | 
| Ref | Expression | 
|---|---|
| bj-cbv2hv.1 | ⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) | 
| bj-cbv2hv.2 | ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) | 
| bj-cbv2hv.3 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | 
| Ref | Expression | 
|---|---|
| bj-cbv2hv | ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bj-cbv2hv.1 | . . 3 ⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) | |
| 2 | bj-cbv2hv.2 | . . 3 ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) | |
| 3 | bj-cbv2hv.3 | . . . 4 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
| 4 | biimp 215 | . . . 4 ⊢ ((𝜓 ↔ 𝜒) → (𝜓 → 𝜒)) | |
| 5 | 3, 4 | syl6 35 | . . 3 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) | 
| 6 | 1, 2, 5 | bj-cbv1hv 36797 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒)) | 
| 7 | equcomi 2016 | . . . . 5 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
| 8 | biimpr 220 | . . . . 5 ⊢ ((𝜓 ↔ 𝜒) → (𝜒 → 𝜓)) | |
| 9 | 7, 3, 8 | syl56 36 | . . . 4 ⊢ (𝜑 → (𝑦 = 𝑥 → (𝜒 → 𝜓))) | 
| 10 | 2, 1, 9 | bj-cbv1hv 36797 | . . 3 ⊢ (∀𝑦∀𝑥𝜑 → (∀𝑦𝜒 → ∀𝑥𝜓)) | 
| 11 | 10 | alcoms 2158 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑦𝜒 → ∀𝑥𝜓)) | 
| 12 | 6, 11 | impbid 212 | 1 ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-nf 1784 | 
| This theorem is referenced by: bj-cbv2v 36799 | 
| Copyright terms: Public domain | W3C validator |