MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  an2anr Structured version   Visualization version   GIF version

Theorem an2anr 635
Description: Double commutation in conjunction. (Contributed by Peter Mazsa, 27-Jun-2019.)
Assertion
Ref Expression
an2anr (((𝜑𝜓) ∧ (𝜒𝜃)) ↔ ((𝜓𝜑) ∧ (𝜃𝜒)))

Proof of Theorem an2anr
StepHypRef Expression
1 ancom 460 . 2 ((𝜑𝜓) ↔ (𝜓𝜑))
2 ancom 460 . 2 ((𝜒𝜃) ↔ (𝜃𝜒))
31, 2anbi12i 627 1 (((𝜑𝜓) ∧ (𝜒𝜃)) ↔ ((𝜓𝜑) ∧ (𝜃𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  13an22anass  32493  br1cossinres  38403  br1cossxrnres  38404
  Copyright terms: Public domain W3C validator