Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > an2anr | Structured version Visualization version GIF version |
Description: Double commutation in conjunction. (Contributed by Peter Mazsa, 27-Jun-2019.) |
Ref | Expression |
---|---|
an2anr | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜓 ∧ 𝜑) ∧ (𝜃 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 461 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
2 | ancom 461 | . 2 ⊢ ((𝜒 ∧ 𝜃) ↔ (𝜃 ∧ 𝜒)) | |
3 | 1, 2 | anbi12i 627 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜓 ∧ 𝜑) ∧ (𝜃 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: br1cossinres 36722 br1cossxrnres 36723 |
Copyright terms: Public domain | W3C validator |