| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an2anr | Structured version Visualization version GIF version | ||
| Description: Double commutation in conjunction. (Contributed by Peter Mazsa, 27-Jun-2019.) |
| Ref | Expression |
|---|---|
| an2anr | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜓 ∧ 𝜑) ∧ (𝜃 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 460 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
| 2 | ancom 460 | . 2 ⊢ ((𝜒 ∧ 𝜃) ↔ (𝜃 ∧ 𝜒)) | |
| 3 | 1, 2 | anbi12i 628 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜓 ∧ 𝜑) ∧ (𝜃 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 13an22anass 32450 br1cossinres 38470 br1cossxrnres 38471 |
| Copyright terms: Public domain | W3C validator |