| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.38 | Structured version Visualization version GIF version | ||
| Description: Theorem *4.38 of [WhiteheadRussell] p. 118. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm4.38 | ⊢ (((𝜑 ↔ 𝜒) ∧ (𝜓 ↔ 𝜃)) → ((𝜑 ∧ 𝜓) ↔ (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ (((𝜑 ↔ 𝜒) ∧ (𝜓 ↔ 𝜃)) → (𝜑 ↔ 𝜒)) | |
| 2 | simpr 484 | . 2 ⊢ (((𝜑 ↔ 𝜒) ∧ (𝜓 ↔ 𝜃)) → (𝜓 ↔ 𝜃)) | |
| 3 | 1, 2 | anbi12d 632 | 1 ⊢ (((𝜑 ↔ 𝜒) ∧ (𝜓 ↔ 𝜃)) → ((𝜑 ∧ 𝜓) ↔ (𝜒 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: bi2anan9 638 xpf1o 9153 isprm3 16702 csbingVD 44908 csbxpgVD 44918 csbunigVD 44922 ichan 47469 |
| Copyright terms: Public domain | W3C validator |