Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cossinres Structured version   Visualization version   GIF version

Theorem br1cossinres 37621
Description: 𝐵 and 𝐶 are cosets by an intersection with a restriction: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.)
Assertion
Ref Expression
br1cossinres ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅 ∩ (𝑆𝐴))𝐶 ↔ ∃𝑢𝐴 ((𝑢𝑆𝐵𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶𝑢𝑅𝐶))))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝐶   𝑢,𝑅   𝑢,𝑆   𝑢,𝑉   𝑢,𝑊

Proof of Theorem br1cossinres
StepHypRef Expression
1 inres 6000 . . . 4 (𝑅 ∩ (𝑆𝐴)) = ((𝑅𝑆) ↾ 𝐴)
21cosseqi 37601 . . 3 ≀ (𝑅 ∩ (𝑆𝐴)) = ≀ ((𝑅𝑆) ↾ 𝐴)
32breqi 5155 . 2 (𝐵 ≀ (𝑅 ∩ (𝑆𝐴))𝐶𝐵 ≀ ((𝑅𝑆) ↾ 𝐴)𝐶)
4 br1cossres 37613 . . 3 ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ ((𝑅𝑆) ↾ 𝐴)𝐶 ↔ ∃𝑢𝐴 (𝑢(𝑅𝑆)𝐵𝑢(𝑅𝑆)𝐶)))
5 brin 5201 . . . . . 6 (𝑢(𝑅𝑆)𝐵 ↔ (𝑢𝑅𝐵𝑢𝑆𝐵))
6 brin 5201 . . . . . 6 (𝑢(𝑅𝑆)𝐶 ↔ (𝑢𝑅𝐶𝑢𝑆𝐶))
75, 6anbi12i 626 . . . . 5 ((𝑢(𝑅𝑆)𝐵𝑢(𝑅𝑆)𝐶) ↔ ((𝑢𝑅𝐵𝑢𝑆𝐵) ∧ (𝑢𝑅𝐶𝑢𝑆𝐶)))
8 an2anr 634 . . . . 5 (((𝑢𝑅𝐵𝑢𝑆𝐵) ∧ (𝑢𝑅𝐶𝑢𝑆𝐶)) ↔ ((𝑢𝑆𝐵𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶𝑢𝑅𝐶)))
97, 8bitri 274 . . . 4 ((𝑢(𝑅𝑆)𝐵𝑢(𝑅𝑆)𝐶) ↔ ((𝑢𝑆𝐵𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶𝑢𝑅𝐶)))
109rexbii 3093 . . 3 (∃𝑢𝐴 (𝑢(𝑅𝑆)𝐵𝑢(𝑅𝑆)𝐶) ↔ ∃𝑢𝐴 ((𝑢𝑆𝐵𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶𝑢𝑅𝐶)))
114, 10bitrdi 286 . 2 ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ ((𝑅𝑆) ↾ 𝐴)𝐶 ↔ ∃𝑢𝐴 ((𝑢𝑆𝐵𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶𝑢𝑅𝐶))))
123, 11bitrid 282 1 ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅 ∩ (𝑆𝐴))𝐶 ↔ ∃𝑢𝐴 ((𝑢𝑆𝐵𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶𝑢𝑅𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2105  wrex 3069  cin 3948   class class class wbr 5149  cres 5679  ccoss 37347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-res 5689  df-coss 37585
This theorem is referenced by:  br1cossinidres  37623  br1cossincnvepres  37624
  Copyright terms: Public domain W3C validator