| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cossinres | Structured version Visualization version GIF version | ||
| Description: 𝐵 and 𝐶 are cosets by an intersection with a restriction: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| Ref | Expression |
|---|---|
| br1cossinres | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ (𝑆 ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶 ∧ 𝑢𝑅𝐶)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inres 5945 | . . . 4 ⊢ (𝑅 ∩ (𝑆 ↾ 𝐴)) = ((𝑅 ∩ 𝑆) ↾ 𝐴) | |
| 2 | 1 | cosseqi 38539 | . . 3 ⊢ ≀ (𝑅 ∩ (𝑆 ↾ 𝐴)) = ≀ ((𝑅 ∩ 𝑆) ↾ 𝐴) |
| 3 | 2 | breqi 5095 | . 2 ⊢ (𝐵 ≀ (𝑅 ∩ (𝑆 ↾ 𝐴))𝐶 ↔ 𝐵 ≀ ((𝑅 ∩ 𝑆) ↾ 𝐴)𝐶) |
| 4 | br1cossres 38551 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ ((𝑅 ∩ 𝑆) ↾ 𝐴)𝐶 ↔ ∃𝑢 ∈ 𝐴 (𝑢(𝑅 ∩ 𝑆)𝐵 ∧ 𝑢(𝑅 ∩ 𝑆)𝐶))) | |
| 5 | brin 5141 | . . . . . 6 ⊢ (𝑢(𝑅 ∩ 𝑆)𝐵 ↔ (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐵)) | |
| 6 | brin 5141 | . . . . . 6 ⊢ (𝑢(𝑅 ∩ 𝑆)𝐶 ↔ (𝑢𝑅𝐶 ∧ 𝑢𝑆𝐶)) | |
| 7 | 5, 6 | anbi12i 628 | . . . . 5 ⊢ ((𝑢(𝑅 ∩ 𝑆)𝐵 ∧ 𝑢(𝑅 ∩ 𝑆)𝐶) ↔ ((𝑢𝑅𝐵 ∧ 𝑢𝑆𝐵) ∧ (𝑢𝑅𝐶 ∧ 𝑢𝑆𝐶))) |
| 8 | an2anr 636 | . . . . 5 ⊢ (((𝑢𝑅𝐵 ∧ 𝑢𝑆𝐵) ∧ (𝑢𝑅𝐶 ∧ 𝑢𝑆𝐶)) ↔ ((𝑢𝑆𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶 ∧ 𝑢𝑅𝐶))) | |
| 9 | 7, 8 | bitri 275 | . . . 4 ⊢ ((𝑢(𝑅 ∩ 𝑆)𝐵 ∧ 𝑢(𝑅 ∩ 𝑆)𝐶) ↔ ((𝑢𝑆𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶 ∧ 𝑢𝑅𝐶))) |
| 10 | 9 | rexbii 3079 | . . 3 ⊢ (∃𝑢 ∈ 𝐴 (𝑢(𝑅 ∩ 𝑆)𝐵 ∧ 𝑢(𝑅 ∩ 𝑆)𝐶) ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶 ∧ 𝑢𝑅𝐶))) |
| 11 | 4, 10 | bitrdi 287 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ ((𝑅 ∩ 𝑆) ↾ 𝐴)𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶 ∧ 𝑢𝑅𝐶)))) |
| 12 | 3, 11 | bitrid 283 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ (𝑆 ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶 ∧ 𝑢𝑅𝐶)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ∃wrex 3056 ∩ cin 3896 class class class wbr 5089 ↾ cres 5616 ≀ ccoss 38232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-res 5626 df-coss 38523 |
| This theorem is referenced by: br1cossinidres 38561 br1cossincnvepres 38562 |
| Copyright terms: Public domain | W3C validator |