| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cossinres | Structured version Visualization version GIF version | ||
| Description: 𝐵 and 𝐶 are cosets by an intersection with a restriction: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| Ref | Expression |
|---|---|
| br1cossinres | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ (𝑆 ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶 ∧ 𝑢𝑅𝐶)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inres 5995 | . . . 4 ⊢ (𝑅 ∩ (𝑆 ↾ 𝐴)) = ((𝑅 ∩ 𝑆) ↾ 𝐴) | |
| 2 | 1 | cosseqi 38387 | . . 3 ⊢ ≀ (𝑅 ∩ (𝑆 ↾ 𝐴)) = ≀ ((𝑅 ∩ 𝑆) ↾ 𝐴) |
| 3 | 2 | breqi 5129 | . 2 ⊢ (𝐵 ≀ (𝑅 ∩ (𝑆 ↾ 𝐴))𝐶 ↔ 𝐵 ≀ ((𝑅 ∩ 𝑆) ↾ 𝐴)𝐶) |
| 4 | br1cossres 38399 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ ((𝑅 ∩ 𝑆) ↾ 𝐴)𝐶 ↔ ∃𝑢 ∈ 𝐴 (𝑢(𝑅 ∩ 𝑆)𝐵 ∧ 𝑢(𝑅 ∩ 𝑆)𝐶))) | |
| 5 | brin 5175 | . . . . . 6 ⊢ (𝑢(𝑅 ∩ 𝑆)𝐵 ↔ (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐵)) | |
| 6 | brin 5175 | . . . . . 6 ⊢ (𝑢(𝑅 ∩ 𝑆)𝐶 ↔ (𝑢𝑅𝐶 ∧ 𝑢𝑆𝐶)) | |
| 7 | 5, 6 | anbi12i 628 | . . . . 5 ⊢ ((𝑢(𝑅 ∩ 𝑆)𝐵 ∧ 𝑢(𝑅 ∩ 𝑆)𝐶) ↔ ((𝑢𝑅𝐵 ∧ 𝑢𝑆𝐵) ∧ (𝑢𝑅𝐶 ∧ 𝑢𝑆𝐶))) |
| 8 | an2anr 636 | . . . . 5 ⊢ (((𝑢𝑅𝐵 ∧ 𝑢𝑆𝐵) ∧ (𝑢𝑅𝐶 ∧ 𝑢𝑆𝐶)) ↔ ((𝑢𝑆𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶 ∧ 𝑢𝑅𝐶))) | |
| 9 | 7, 8 | bitri 275 | . . . 4 ⊢ ((𝑢(𝑅 ∩ 𝑆)𝐵 ∧ 𝑢(𝑅 ∩ 𝑆)𝐶) ↔ ((𝑢𝑆𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶 ∧ 𝑢𝑅𝐶))) |
| 10 | 9 | rexbii 3082 | . . 3 ⊢ (∃𝑢 ∈ 𝐴 (𝑢(𝑅 ∩ 𝑆)𝐵 ∧ 𝑢(𝑅 ∩ 𝑆)𝐶) ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶 ∧ 𝑢𝑅𝐶))) |
| 11 | 4, 10 | bitrdi 287 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ ((𝑅 ∩ 𝑆) ↾ 𝐴)𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶 ∧ 𝑢𝑅𝐶)))) |
| 12 | 3, 11 | bitrid 283 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ (𝑆 ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶 ∧ 𝑢𝑅𝐶)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 ∃wrex 3059 ∩ cin 3930 class class class wbr 5123 ↾ cres 5667 ≀ ccoss 38141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-xp 5671 df-res 5677 df-coss 38371 |
| This theorem is referenced by: br1cossinidres 38409 br1cossincnvepres 38410 |
| Copyright terms: Public domain | W3C validator |