Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cossinres Structured version   Visualization version   GIF version

Theorem br1cossinres 36492
Description: 𝐵 and 𝐶 are cosets by an intersection with a restriction: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.)
Assertion
Ref Expression
br1cossinres ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅 ∩ (𝑆𝐴))𝐶 ↔ ∃𝑢𝐴 ((𝑢𝑆𝐵𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶𝑢𝑅𝐶))))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝐶   𝑢,𝑅   𝑢,𝑆   𝑢,𝑉   𝑢,𝑊

Proof of Theorem br1cossinres
StepHypRef Expression
1 inres 5898 . . . 4 (𝑅 ∩ (𝑆𝐴)) = ((𝑅𝑆) ↾ 𝐴)
21cosseqi 36477 . . 3 ≀ (𝑅 ∩ (𝑆𝐴)) = ≀ ((𝑅𝑆) ↾ 𝐴)
32breqi 5076 . 2 (𝐵 ≀ (𝑅 ∩ (𝑆𝐴))𝐶𝐵 ≀ ((𝑅𝑆) ↾ 𝐴)𝐶)
4 br1cossres 36489 . . 3 ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ ((𝑅𝑆) ↾ 𝐴)𝐶 ↔ ∃𝑢𝐴 (𝑢(𝑅𝑆)𝐵𝑢(𝑅𝑆)𝐶)))
5 brin 5122 . . . . . 6 (𝑢(𝑅𝑆)𝐵 ↔ (𝑢𝑅𝐵𝑢𝑆𝐵))
6 brin 5122 . . . . . 6 (𝑢(𝑅𝑆)𝐶 ↔ (𝑢𝑅𝐶𝑢𝑆𝐶))
75, 6anbi12i 626 . . . . 5 ((𝑢(𝑅𝑆)𝐵𝑢(𝑅𝑆)𝐶) ↔ ((𝑢𝑅𝐵𝑢𝑆𝐵) ∧ (𝑢𝑅𝐶𝑢𝑆𝐶)))
8 an2anr 36305 . . . . 5 (((𝑢𝑅𝐵𝑢𝑆𝐵) ∧ (𝑢𝑅𝐶𝑢𝑆𝐶)) ↔ ((𝑢𝑆𝐵𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶𝑢𝑅𝐶)))
97, 8bitri 274 . . . 4 ((𝑢(𝑅𝑆)𝐵𝑢(𝑅𝑆)𝐶) ↔ ((𝑢𝑆𝐵𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶𝑢𝑅𝐶)))
109rexbii 3177 . . 3 (∃𝑢𝐴 (𝑢(𝑅𝑆)𝐵𝑢(𝑅𝑆)𝐶) ↔ ∃𝑢𝐴 ((𝑢𝑆𝐵𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶𝑢𝑅𝐶)))
114, 10bitrdi 286 . 2 ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ ((𝑅𝑆) ↾ 𝐴)𝐶 ↔ ∃𝑢𝐴 ((𝑢𝑆𝐵𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶𝑢𝑅𝐶))))
123, 11syl5bb 282 1 ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅 ∩ (𝑆𝐴))𝐶 ↔ ∃𝑢𝐴 ((𝑢𝑆𝐵𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶𝑢𝑅𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108  wrex 3064  cin 3882   class class class wbr 5070  cres 5582  ccoss 36260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-res 5592  df-coss 36464
This theorem is referenced by:  br1cossinidres  36494  br1cossincnvepres  36495
  Copyright terms: Public domain W3C validator