Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cossinres Structured version   Visualization version   GIF version

Theorem br1cossinres 38407
Description: 𝐵 and 𝐶 are cosets by an intersection with a restriction: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.)
Assertion
Ref Expression
br1cossinres ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅 ∩ (𝑆𝐴))𝐶 ↔ ∃𝑢𝐴 ((𝑢𝑆𝐵𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶𝑢𝑅𝐶))))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝐶   𝑢,𝑅   𝑢,𝑆   𝑢,𝑉   𝑢,𝑊

Proof of Theorem br1cossinres
StepHypRef Expression
1 inres 5995 . . . 4 (𝑅 ∩ (𝑆𝐴)) = ((𝑅𝑆) ↾ 𝐴)
21cosseqi 38387 . . 3 ≀ (𝑅 ∩ (𝑆𝐴)) = ≀ ((𝑅𝑆) ↾ 𝐴)
32breqi 5129 . 2 (𝐵 ≀ (𝑅 ∩ (𝑆𝐴))𝐶𝐵 ≀ ((𝑅𝑆) ↾ 𝐴)𝐶)
4 br1cossres 38399 . . 3 ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ ((𝑅𝑆) ↾ 𝐴)𝐶 ↔ ∃𝑢𝐴 (𝑢(𝑅𝑆)𝐵𝑢(𝑅𝑆)𝐶)))
5 brin 5175 . . . . . 6 (𝑢(𝑅𝑆)𝐵 ↔ (𝑢𝑅𝐵𝑢𝑆𝐵))
6 brin 5175 . . . . . 6 (𝑢(𝑅𝑆)𝐶 ↔ (𝑢𝑅𝐶𝑢𝑆𝐶))
75, 6anbi12i 628 . . . . 5 ((𝑢(𝑅𝑆)𝐵𝑢(𝑅𝑆)𝐶) ↔ ((𝑢𝑅𝐵𝑢𝑆𝐵) ∧ (𝑢𝑅𝐶𝑢𝑆𝐶)))
8 an2anr 636 . . . . 5 (((𝑢𝑅𝐵𝑢𝑆𝐵) ∧ (𝑢𝑅𝐶𝑢𝑆𝐶)) ↔ ((𝑢𝑆𝐵𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶𝑢𝑅𝐶)))
97, 8bitri 275 . . . 4 ((𝑢(𝑅𝑆)𝐵𝑢(𝑅𝑆)𝐶) ↔ ((𝑢𝑆𝐵𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶𝑢𝑅𝐶)))
109rexbii 3082 . . 3 (∃𝑢𝐴 (𝑢(𝑅𝑆)𝐵𝑢(𝑅𝑆)𝐶) ↔ ∃𝑢𝐴 ((𝑢𝑆𝐵𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶𝑢𝑅𝐶)))
114, 10bitrdi 287 . 2 ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ ((𝑅𝑆) ↾ 𝐴)𝐶 ↔ ∃𝑢𝐴 ((𝑢𝑆𝐵𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶𝑢𝑅𝐶))))
123, 11bitrid 283 1 ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅 ∩ (𝑆𝐴))𝐶 ↔ ∃𝑢𝐴 ((𝑢𝑆𝐵𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶𝑢𝑅𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2107  wrex 3059  cin 3930   class class class wbr 5123  cres 5667  ccoss 38141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-xp 5671  df-res 5677  df-coss 38371
This theorem is referenced by:  br1cossinidres  38409  br1cossincnvepres  38410
  Copyright terms: Public domain W3C validator