![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cossinres | Structured version Visualization version GIF version |
Description: 𝐵 and 𝐶 are cosets by an intersection with a restriction: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
Ref | Expression |
---|---|
br1cossinres | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ (𝑆 ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶 ∧ 𝑢𝑅𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inres 6022 | . . . 4 ⊢ (𝑅 ∩ (𝑆 ↾ 𝐴)) = ((𝑅 ∩ 𝑆) ↾ 𝐴) | |
2 | 1 | cosseqi 38423 | . . 3 ⊢ ≀ (𝑅 ∩ (𝑆 ↾ 𝐴)) = ≀ ((𝑅 ∩ 𝑆) ↾ 𝐴) |
3 | 2 | breqi 5157 | . 2 ⊢ (𝐵 ≀ (𝑅 ∩ (𝑆 ↾ 𝐴))𝐶 ↔ 𝐵 ≀ ((𝑅 ∩ 𝑆) ↾ 𝐴)𝐶) |
4 | br1cossres 38435 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ ((𝑅 ∩ 𝑆) ↾ 𝐴)𝐶 ↔ ∃𝑢 ∈ 𝐴 (𝑢(𝑅 ∩ 𝑆)𝐵 ∧ 𝑢(𝑅 ∩ 𝑆)𝐶))) | |
5 | brin 5203 | . . . . . 6 ⊢ (𝑢(𝑅 ∩ 𝑆)𝐵 ↔ (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐵)) | |
6 | brin 5203 | . . . . . 6 ⊢ (𝑢(𝑅 ∩ 𝑆)𝐶 ↔ (𝑢𝑅𝐶 ∧ 𝑢𝑆𝐶)) | |
7 | 5, 6 | anbi12i 628 | . . . . 5 ⊢ ((𝑢(𝑅 ∩ 𝑆)𝐵 ∧ 𝑢(𝑅 ∩ 𝑆)𝐶) ↔ ((𝑢𝑅𝐵 ∧ 𝑢𝑆𝐵) ∧ (𝑢𝑅𝐶 ∧ 𝑢𝑆𝐶))) |
8 | an2anr 636 | . . . . 5 ⊢ (((𝑢𝑅𝐵 ∧ 𝑢𝑆𝐵) ∧ (𝑢𝑅𝐶 ∧ 𝑢𝑆𝐶)) ↔ ((𝑢𝑆𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶 ∧ 𝑢𝑅𝐶))) | |
9 | 7, 8 | bitri 275 | . . . 4 ⊢ ((𝑢(𝑅 ∩ 𝑆)𝐵 ∧ 𝑢(𝑅 ∩ 𝑆)𝐶) ↔ ((𝑢𝑆𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶 ∧ 𝑢𝑅𝐶))) |
10 | 9 | rexbii 3094 | . . 3 ⊢ (∃𝑢 ∈ 𝐴 (𝑢(𝑅 ∩ 𝑆)𝐵 ∧ 𝑢(𝑅 ∩ 𝑆)𝐶) ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶 ∧ 𝑢𝑅𝐶))) |
11 | 4, 10 | bitrdi 287 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ ((𝑅 ∩ 𝑆) ↾ 𝐴)𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶 ∧ 𝑢𝑅𝐶)))) |
12 | 3, 11 | bitrid 283 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ (𝑆 ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶 ∧ 𝑢𝑅𝐶)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∃wrex 3070 ∩ cin 3965 class class class wbr 5151 ↾ cres 5695 ≀ ccoss 38176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-xp 5699 df-res 5705 df-coss 38407 |
This theorem is referenced by: br1cossinidres 38445 br1cossincnvepres 38446 |
Copyright terms: Public domain | W3C validator |