MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anbi1cd Structured version   Visualization version   GIF version

Theorem anbi1cd 634
Description: Introduce a proposition as left conjunct on the left-hand side and right conjunct on the right-hand side of an equivalence. Deduction form. (Contributed by Peter Mazsa, 22-May-2021.)
Hypothesis
Ref Expression
anbi1cd.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
anbi1cd (𝜑 → ((𝜃𝜓) ↔ (𝜒𝜃)))

Proof of Theorem anbi1cd
StepHypRef Expression
1 anbi1cd.1 . . 3 (𝜑 → (𝜓𝜒))
21anbi2d 629 . 2 (𝜑 → ((𝜃𝜓) ↔ (𝜃𝜒)))
32biancomd 464 1 (𝜑 → ((𝜃𝜓) ↔ (𝜒𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  opelres  5897  mbfaddlem  24824  dvreslem  25073  eccnvepres  36415  brxrn  36504
  Copyright terms: Public domain W3C validator