Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cossxrnres Structured version   Visualization version   GIF version

Theorem br1cossxrnres 36566
Description: 𝐵, 𝐶 and 𝐷, 𝐸 are cosets by an intersection with a restriction: a binary relation. (Contributed by Peter Mazsa, 8-Jun-2021.)
Assertion
Ref Expression
br1cossxrnres (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ (𝑆𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝑢𝑆𝐶𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸𝑢𝑅𝐷))))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝐶   𝑢,𝐷   𝑢,𝐸   𝑢,𝑅   𝑢,𝑆   𝑢,𝑉   𝑢,𝑊   𝑢,𝑋   𝑢,𝑌

Proof of Theorem br1cossxrnres
StepHypRef Expression
1 xrnres2 36529 . . . 4 ((𝑅𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆𝐴))
21cosseqi 36550 . . 3 ≀ ((𝑅𝑆) ↾ 𝐴) = ≀ (𝑅 ⋉ (𝑆𝐴))
32breqi 5080 . 2 (⟨𝐵, 𝐶⟩ ≀ ((𝑅𝑆) ↾ 𝐴)⟨𝐷, 𝐸⟩ ↔ ⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ (𝑆𝐴))⟨𝐷, 𝐸⟩)
4 opex 5379 . . . 4 𝐵, 𝐶⟩ ∈ V
5 opex 5379 . . . 4 𝐷, 𝐸⟩ ∈ V
6 br1cossres 36562 . . . 4 ((⟨𝐵, 𝐶⟩ ∈ V ∧ ⟨𝐷, 𝐸⟩ ∈ V) → (⟨𝐵, 𝐶⟩ ≀ ((𝑅𝑆) ↾ 𝐴)⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 (𝑢(𝑅𝑆)⟨𝐵, 𝐶⟩ ∧ 𝑢(𝑅𝑆)⟨𝐷, 𝐸⟩)))
74, 5, 6mp2an 689 . . 3 (⟨𝐵, 𝐶⟩ ≀ ((𝑅𝑆) ↾ 𝐴)⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 (𝑢(𝑅𝑆)⟨𝐵, 𝐶⟩ ∧ 𝑢(𝑅𝑆)⟨𝐷, 𝐸⟩))
8 brxrn 36504 . . . . . . 7 ((𝑢 ∈ V ∧ 𝐵𝑉𝐶𝑊) → (𝑢(𝑅𝑆)⟨𝐵, 𝐶⟩ ↔ (𝑢𝑅𝐵𝑢𝑆𝐶)))
98el3v1 36372 . . . . . 6 ((𝐵𝑉𝐶𝑊) → (𝑢(𝑅𝑆)⟨𝐵, 𝐶⟩ ↔ (𝑢𝑅𝐵𝑢𝑆𝐶)))
10 brxrn 36504 . . . . . . 7 ((𝑢 ∈ V ∧ 𝐷𝑋𝐸𝑌) → (𝑢(𝑅𝑆)⟨𝐷, 𝐸⟩ ↔ (𝑢𝑅𝐷𝑢𝑆𝐸)))
1110el3v1 36372 . . . . . 6 ((𝐷𝑋𝐸𝑌) → (𝑢(𝑅𝑆)⟨𝐷, 𝐸⟩ ↔ (𝑢𝑅𝐷𝑢𝑆𝐸)))
129, 11bi2anan9 636 . . . . 5 (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → ((𝑢(𝑅𝑆)⟨𝐵, 𝐶⟩ ∧ 𝑢(𝑅𝑆)⟨𝐷, 𝐸⟩) ↔ ((𝑢𝑅𝐵𝑢𝑆𝐶) ∧ (𝑢𝑅𝐷𝑢𝑆𝐸))))
13 an2anr 36378 . . . . 5 (((𝑢𝑅𝐵𝑢𝑆𝐶) ∧ (𝑢𝑅𝐷𝑢𝑆𝐸)) ↔ ((𝑢𝑆𝐶𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸𝑢𝑅𝐷)))
1412, 13bitrdi 287 . . . 4 (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → ((𝑢(𝑅𝑆)⟨𝐵, 𝐶⟩ ∧ 𝑢(𝑅𝑆)⟨𝐷, 𝐸⟩) ↔ ((𝑢𝑆𝐶𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸𝑢𝑅𝐷))))
1514rexbidv 3226 . . 3 (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (∃𝑢𝐴 (𝑢(𝑅𝑆)⟨𝐵, 𝐶⟩ ∧ 𝑢(𝑅𝑆)⟨𝐷, 𝐸⟩) ↔ ∃𝑢𝐴 ((𝑢𝑆𝐶𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸𝑢𝑅𝐷))))
167, 15syl5bb 283 . 2 (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ ((𝑅𝑆) ↾ 𝐴)⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝑢𝑆𝐶𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸𝑢𝑅𝐷))))
173, 16bitr3id 285 1 (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ (𝑆𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝑢𝑆𝐶𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸𝑢𝑅𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  wrex 3065  Vcvv 3432  cop 4567   class class class wbr 5074  cres 5591  cxrn 36332  ccoss 36333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439  df-fv 6441  df-1st 7831  df-2nd 7832  df-xrn 36501  df-coss 36537
This theorem is referenced by:  br1cossxrnidres  36569  br1cossxrncnvepres  36570  br1cossxrncnvssrres  36626
  Copyright terms: Public domain W3C validator