![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cossxrnres | Structured version Visualization version GIF version |
Description: ⟨𝐵, 𝐶⟩ and ⟨𝐷, 𝐸⟩ are cosets by an range Cartesian product with a restriction: a binary relation. (Contributed by Peter Mazsa, 8-Jun-2021.) |
Ref | Expression |
---|---|
br1cossxrnres | ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ (𝑆 ↾ 𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸 ∧ 𝑢𝑅𝐷)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnres2 37812 | . . . 4 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆 ↾ 𝐴)) | |
2 | 1 | cosseqi 37836 | . . 3 ⊢ ≀ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ≀ (𝑅 ⋉ (𝑆 ↾ 𝐴)) |
3 | 2 | breqi 5148 | . 2 ⊢ (⟨𝐵, 𝐶⟩ ≀ ((𝑅 ⋉ 𝑆) ↾ 𝐴)⟨𝐷, 𝐸⟩ ↔ ⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ (𝑆 ↾ 𝐴))⟨𝐷, 𝐸⟩) |
4 | opex 5460 | . . . 4 ⊢ ⟨𝐵, 𝐶⟩ ∈ V | |
5 | opex 5460 | . . . 4 ⊢ ⟨𝐷, 𝐸⟩ ∈ V | |
6 | br1cossres 37848 | . . . 4 ⊢ ((⟨𝐵, 𝐶⟩ ∈ V ∧ ⟨𝐷, 𝐸⟩ ∈ V) → (⟨𝐵, 𝐶⟩ ≀ ((𝑅 ⋉ 𝑆) ↾ 𝐴)⟨𝐷, 𝐸⟩ ↔ ∃𝑢 ∈ 𝐴 (𝑢(𝑅 ⋉ 𝑆)⟨𝐵, 𝐶⟩ ∧ 𝑢(𝑅 ⋉ 𝑆)⟨𝐷, 𝐸⟩))) | |
7 | 4, 5, 6 | mp2an 691 | . . 3 ⊢ (⟨𝐵, 𝐶⟩ ≀ ((𝑅 ⋉ 𝑆) ↾ 𝐴)⟨𝐷, 𝐸⟩ ↔ ∃𝑢 ∈ 𝐴 (𝑢(𝑅 ⋉ 𝑆)⟨𝐵, 𝐶⟩ ∧ 𝑢(𝑅 ⋉ 𝑆)⟨𝐷, 𝐸⟩)) |
8 | brxrn 37783 | . . . . . . 7 ⊢ ((𝑢 ∈ V ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝑢(𝑅 ⋉ 𝑆)⟨𝐵, 𝐶⟩ ↔ (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶))) | |
9 | 8 | el3v1 37627 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝑢(𝑅 ⋉ 𝑆)⟨𝐵, 𝐶⟩ ↔ (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶))) |
10 | brxrn 37783 | . . . . . . 7 ⊢ ((𝑢 ∈ V ∧ 𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (𝑢(𝑅 ⋉ 𝑆)⟨𝐷, 𝐸⟩ ↔ (𝑢𝑅𝐷 ∧ 𝑢𝑆𝐸))) | |
11 | 10 | el3v1 37627 | . . . . . 6 ⊢ ((𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (𝑢(𝑅 ⋉ 𝑆)⟨𝐷, 𝐸⟩ ↔ (𝑢𝑅𝐷 ∧ 𝑢𝑆𝐸))) |
12 | 9, 11 | bi2anan9 637 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → ((𝑢(𝑅 ⋉ 𝑆)⟨𝐵, 𝐶⟩ ∧ 𝑢(𝑅 ⋉ 𝑆)⟨𝐷, 𝐸⟩) ↔ ((𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶) ∧ (𝑢𝑅𝐷 ∧ 𝑢𝑆𝐸)))) |
13 | an2anr 635 | . . . . 5 ⊢ (((𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶) ∧ (𝑢𝑅𝐷 ∧ 𝑢𝑆𝐸)) ↔ ((𝑢𝑆𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸 ∧ 𝑢𝑅𝐷))) | |
14 | 12, 13 | bitrdi 287 | . . . 4 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → ((𝑢(𝑅 ⋉ 𝑆)⟨𝐵, 𝐶⟩ ∧ 𝑢(𝑅 ⋉ 𝑆)⟨𝐷, 𝐸⟩) ↔ ((𝑢𝑆𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸 ∧ 𝑢𝑅𝐷)))) |
15 | 14 | rexbidv 3173 | . . 3 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (∃𝑢 ∈ 𝐴 (𝑢(𝑅 ⋉ 𝑆)⟨𝐵, 𝐶⟩ ∧ 𝑢(𝑅 ⋉ 𝑆)⟨𝐷, 𝐸⟩) ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸 ∧ 𝑢𝑅𝐷)))) |
16 | 7, 15 | bitrid 283 | . 2 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (⟨𝐵, 𝐶⟩ ≀ ((𝑅 ⋉ 𝑆) ↾ 𝐴)⟨𝐷, 𝐸⟩ ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸 ∧ 𝑢𝑅𝐷)))) |
17 | 3, 16 | bitr3id 285 | 1 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ (𝑆 ↾ 𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸 ∧ 𝑢𝑅𝐷)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2099 ∃wrex 3065 Vcvv 3469 ⟨cop 4630 class class class wbr 5142 ↾ cres 5674 ⋉ cxrn 37582 ≀ ccoss 37583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fo 6548 df-fv 6550 df-1st 7987 df-2nd 7988 df-xrn 37780 df-coss 37820 |
This theorem is referenced by: br1cossxrnidres 37860 br1cossxrncnvepres 37861 br1cossxrncnvssrres 37917 |
Copyright terms: Public domain | W3C validator |