Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cossxrnres Structured version   Visualization version   GIF version

Theorem br1cossxrnres 36493
Description: 𝐵, 𝐶 and 𝐷, 𝐸 are cosets by an intersection with a restriction: a binary relation. (Contributed by Peter Mazsa, 8-Jun-2021.)
Assertion
Ref Expression
br1cossxrnres (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ (𝑆𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝑢𝑆𝐶𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸𝑢𝑅𝐷))))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝐶   𝑢,𝐷   𝑢,𝐸   𝑢,𝑅   𝑢,𝑆   𝑢,𝑉   𝑢,𝑊   𝑢,𝑋   𝑢,𝑌

Proof of Theorem br1cossxrnres
StepHypRef Expression
1 xrnres2 36456 . . . 4 ((𝑅𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆𝐴))
21cosseqi 36477 . . 3 ≀ ((𝑅𝑆) ↾ 𝐴) = ≀ (𝑅 ⋉ (𝑆𝐴))
32breqi 5076 . 2 (⟨𝐵, 𝐶⟩ ≀ ((𝑅𝑆) ↾ 𝐴)⟨𝐷, 𝐸⟩ ↔ ⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ (𝑆𝐴))⟨𝐷, 𝐸⟩)
4 opex 5373 . . . 4 𝐵, 𝐶⟩ ∈ V
5 opex 5373 . . . 4 𝐷, 𝐸⟩ ∈ V
6 br1cossres 36489 . . . 4 ((⟨𝐵, 𝐶⟩ ∈ V ∧ ⟨𝐷, 𝐸⟩ ∈ V) → (⟨𝐵, 𝐶⟩ ≀ ((𝑅𝑆) ↾ 𝐴)⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 (𝑢(𝑅𝑆)⟨𝐵, 𝐶⟩ ∧ 𝑢(𝑅𝑆)⟨𝐷, 𝐸⟩)))
74, 5, 6mp2an 688 . . 3 (⟨𝐵, 𝐶⟩ ≀ ((𝑅𝑆) ↾ 𝐴)⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 (𝑢(𝑅𝑆)⟨𝐵, 𝐶⟩ ∧ 𝑢(𝑅𝑆)⟨𝐷, 𝐸⟩))
8 brxrn 36431 . . . . . . 7 ((𝑢 ∈ V ∧ 𝐵𝑉𝐶𝑊) → (𝑢(𝑅𝑆)⟨𝐵, 𝐶⟩ ↔ (𝑢𝑅𝐵𝑢𝑆𝐶)))
98el3v1 36299 . . . . . 6 ((𝐵𝑉𝐶𝑊) → (𝑢(𝑅𝑆)⟨𝐵, 𝐶⟩ ↔ (𝑢𝑅𝐵𝑢𝑆𝐶)))
10 brxrn 36431 . . . . . . 7 ((𝑢 ∈ V ∧ 𝐷𝑋𝐸𝑌) → (𝑢(𝑅𝑆)⟨𝐷, 𝐸⟩ ↔ (𝑢𝑅𝐷𝑢𝑆𝐸)))
1110el3v1 36299 . . . . . 6 ((𝐷𝑋𝐸𝑌) → (𝑢(𝑅𝑆)⟨𝐷, 𝐸⟩ ↔ (𝑢𝑅𝐷𝑢𝑆𝐸)))
129, 11bi2anan9 635 . . . . 5 (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → ((𝑢(𝑅𝑆)⟨𝐵, 𝐶⟩ ∧ 𝑢(𝑅𝑆)⟨𝐷, 𝐸⟩) ↔ ((𝑢𝑅𝐵𝑢𝑆𝐶) ∧ (𝑢𝑅𝐷𝑢𝑆𝐸))))
13 an2anr 36305 . . . . 5 (((𝑢𝑅𝐵𝑢𝑆𝐶) ∧ (𝑢𝑅𝐷𝑢𝑆𝐸)) ↔ ((𝑢𝑆𝐶𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸𝑢𝑅𝐷)))
1412, 13bitrdi 286 . . . 4 (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → ((𝑢(𝑅𝑆)⟨𝐵, 𝐶⟩ ∧ 𝑢(𝑅𝑆)⟨𝐷, 𝐸⟩) ↔ ((𝑢𝑆𝐶𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸𝑢𝑅𝐷))))
1514rexbidv 3225 . . 3 (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (∃𝑢𝐴 (𝑢(𝑅𝑆)⟨𝐵, 𝐶⟩ ∧ 𝑢(𝑅𝑆)⟨𝐷, 𝐸⟩) ↔ ∃𝑢𝐴 ((𝑢𝑆𝐶𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸𝑢𝑅𝐷))))
167, 15syl5bb 282 . 2 (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ ((𝑅𝑆) ↾ 𝐴)⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝑢𝑆𝐶𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸𝑢𝑅𝐷))))
173, 16bitr3id 284 1 (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ (𝑆𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝑢𝑆𝐶𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸𝑢𝑅𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108  wrex 3064  Vcvv 3422  cop 4564   class class class wbr 5070  cres 5582  cxrn 36259  ccoss 36260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-1st 7804  df-2nd 7805  df-xrn 36428  df-coss 36464
This theorem is referenced by:  br1cossxrnidres  36496  br1cossxrncnvepres  36497  br1cossxrncnvssrres  36553
  Copyright terms: Public domain W3C validator