| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cossxrnres | Structured version Visualization version GIF version | ||
| Description: 〈𝐵, 𝐶〉 and 〈𝐷, 𝐸〉 are cosets by an range Cartesian product with a restriction: a binary relation. (Contributed by Peter Mazsa, 8-Jun-2021.) |
| Ref | Expression |
|---|---|
| br1cossxrnres | ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (𝑆 ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸 ∧ 𝑢𝑅𝐷)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnres2 38396 | . . . 4 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆 ↾ 𝐴)) | |
| 2 | 1 | cosseqi 38425 | . . 3 ⊢ ≀ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ≀ (𝑅 ⋉ (𝑆 ↾ 𝐴)) |
| 3 | 2 | breqi 5116 | . 2 ⊢ (〈𝐵, 𝐶〉 ≀ ((𝑅 ⋉ 𝑆) ↾ 𝐴)〈𝐷, 𝐸〉 ↔ 〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (𝑆 ↾ 𝐴))〈𝐷, 𝐸〉) |
| 4 | opex 5427 | . . . 4 ⊢ 〈𝐵, 𝐶〉 ∈ V | |
| 5 | opex 5427 | . . . 4 ⊢ 〈𝐷, 𝐸〉 ∈ V | |
| 6 | br1cossres 38437 | . . . 4 ⊢ ((〈𝐵, 𝐶〉 ∈ V ∧ 〈𝐷, 𝐸〉 ∈ V) → (〈𝐵, 𝐶〉 ≀ ((𝑅 ⋉ 𝑆) ↾ 𝐴)〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 (𝑢(𝑅 ⋉ 𝑆)〈𝐵, 𝐶〉 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝐷, 𝐸〉))) | |
| 7 | 4, 5, 6 | mp2an 692 | . . 3 ⊢ (〈𝐵, 𝐶〉 ≀ ((𝑅 ⋉ 𝑆) ↾ 𝐴)〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 (𝑢(𝑅 ⋉ 𝑆)〈𝐵, 𝐶〉 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝐷, 𝐸〉)) |
| 8 | brxrn 38363 | . . . . . . 7 ⊢ ((𝑢 ∈ V ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝑢(𝑅 ⋉ 𝑆)〈𝐵, 𝐶〉 ↔ (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶))) | |
| 9 | 8 | el3v1 38219 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝑢(𝑅 ⋉ 𝑆)〈𝐵, 𝐶〉 ↔ (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶))) |
| 10 | brxrn 38363 | . . . . . . 7 ⊢ ((𝑢 ∈ V ∧ 𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (𝑢(𝑅 ⋉ 𝑆)〈𝐷, 𝐸〉 ↔ (𝑢𝑅𝐷 ∧ 𝑢𝑆𝐸))) | |
| 11 | 10 | el3v1 38219 | . . . . . 6 ⊢ ((𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (𝑢(𝑅 ⋉ 𝑆)〈𝐷, 𝐸〉 ↔ (𝑢𝑅𝐷 ∧ 𝑢𝑆𝐸))) |
| 12 | 9, 11 | bi2anan9 638 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → ((𝑢(𝑅 ⋉ 𝑆)〈𝐵, 𝐶〉 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝐷, 𝐸〉) ↔ ((𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶) ∧ (𝑢𝑅𝐷 ∧ 𝑢𝑆𝐸)))) |
| 13 | an2anr 636 | . . . . 5 ⊢ (((𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶) ∧ (𝑢𝑅𝐷 ∧ 𝑢𝑆𝐸)) ↔ ((𝑢𝑆𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸 ∧ 𝑢𝑅𝐷))) | |
| 14 | 12, 13 | bitrdi 287 | . . . 4 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → ((𝑢(𝑅 ⋉ 𝑆)〈𝐵, 𝐶〉 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝐷, 𝐸〉) ↔ ((𝑢𝑆𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸 ∧ 𝑢𝑅𝐷)))) |
| 15 | 14 | rexbidv 3158 | . . 3 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (∃𝑢 ∈ 𝐴 (𝑢(𝑅 ⋉ 𝑆)〈𝐵, 𝐶〉 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝐷, 𝐸〉) ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸 ∧ 𝑢𝑅𝐷)))) |
| 16 | 7, 15 | bitrid 283 | . 2 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ ((𝑅 ⋉ 𝑆) ↾ 𝐴)〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸 ∧ 𝑢𝑅𝐷)))) |
| 17 | 3, 16 | bitr3id 285 | 1 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (𝑆 ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸 ∧ 𝑢𝑅𝐷)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∃wrex 3054 Vcvv 3450 〈cop 4598 class class class wbr 5110 ↾ cres 5643 ⋉ cxrn 38175 ≀ ccoss 38176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fo 6520 df-fv 6522 df-1st 7971 df-2nd 7972 df-xrn 38360 df-coss 38409 |
| This theorem is referenced by: br1cossxrnidres 38449 br1cossxrncnvepres 38450 br1cossxrncnvssrres 38506 |
| Copyright terms: Public domain | W3C validator |