![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cossxrnres | Structured version Visualization version GIF version |
Description: ⟨𝐵, 𝐶⟩ and ⟨𝐷, 𝐸⟩ are cosets by an range Cartesian product with a restriction: a binary relation. (Contributed by Peter Mazsa, 8-Jun-2021.) |
Ref | Expression |
---|---|
br1cossxrnres | ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ (𝑆 ↾ 𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸 ∧ 𝑢𝑅𝐷)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnres2 37268 | . . . 4 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆 ↾ 𝐴)) | |
2 | 1 | cosseqi 37292 | . . 3 ⊢ ≀ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ≀ (𝑅 ⋉ (𝑆 ↾ 𝐴)) |
3 | 2 | breqi 5154 | . 2 ⊢ (⟨𝐵, 𝐶⟩ ≀ ((𝑅 ⋉ 𝑆) ↾ 𝐴)⟨𝐷, 𝐸⟩ ↔ ⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ (𝑆 ↾ 𝐴))⟨𝐷, 𝐸⟩) |
4 | opex 5464 | . . . 4 ⊢ ⟨𝐵, 𝐶⟩ ∈ V | |
5 | opex 5464 | . . . 4 ⊢ ⟨𝐷, 𝐸⟩ ∈ V | |
6 | br1cossres 37304 | . . . 4 ⊢ ((⟨𝐵, 𝐶⟩ ∈ V ∧ ⟨𝐷, 𝐸⟩ ∈ V) → (⟨𝐵, 𝐶⟩ ≀ ((𝑅 ⋉ 𝑆) ↾ 𝐴)⟨𝐷, 𝐸⟩ ↔ ∃𝑢 ∈ 𝐴 (𝑢(𝑅 ⋉ 𝑆)⟨𝐵, 𝐶⟩ ∧ 𝑢(𝑅 ⋉ 𝑆)⟨𝐷, 𝐸⟩))) | |
7 | 4, 5, 6 | mp2an 690 | . . 3 ⊢ (⟨𝐵, 𝐶⟩ ≀ ((𝑅 ⋉ 𝑆) ↾ 𝐴)⟨𝐷, 𝐸⟩ ↔ ∃𝑢 ∈ 𝐴 (𝑢(𝑅 ⋉ 𝑆)⟨𝐵, 𝐶⟩ ∧ 𝑢(𝑅 ⋉ 𝑆)⟨𝐷, 𝐸⟩)) |
8 | brxrn 37239 | . . . . . . 7 ⊢ ((𝑢 ∈ V ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝑢(𝑅 ⋉ 𝑆)⟨𝐵, 𝐶⟩ ↔ (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶))) | |
9 | 8 | el3v1 37082 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝑢(𝑅 ⋉ 𝑆)⟨𝐵, 𝐶⟩ ↔ (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶))) |
10 | brxrn 37239 | . . . . . . 7 ⊢ ((𝑢 ∈ V ∧ 𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (𝑢(𝑅 ⋉ 𝑆)⟨𝐷, 𝐸⟩ ↔ (𝑢𝑅𝐷 ∧ 𝑢𝑆𝐸))) | |
11 | 10 | el3v1 37082 | . . . . . 6 ⊢ ((𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (𝑢(𝑅 ⋉ 𝑆)⟨𝐷, 𝐸⟩ ↔ (𝑢𝑅𝐷 ∧ 𝑢𝑆𝐸))) |
12 | 9, 11 | bi2anan9 637 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → ((𝑢(𝑅 ⋉ 𝑆)⟨𝐵, 𝐶⟩ ∧ 𝑢(𝑅 ⋉ 𝑆)⟨𝐷, 𝐸⟩) ↔ ((𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶) ∧ (𝑢𝑅𝐷 ∧ 𝑢𝑆𝐸)))) |
13 | an2anr 635 | . . . . 5 ⊢ (((𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶) ∧ (𝑢𝑅𝐷 ∧ 𝑢𝑆𝐸)) ↔ ((𝑢𝑆𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸 ∧ 𝑢𝑅𝐷))) | |
14 | 12, 13 | bitrdi 286 | . . . 4 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → ((𝑢(𝑅 ⋉ 𝑆)⟨𝐵, 𝐶⟩ ∧ 𝑢(𝑅 ⋉ 𝑆)⟨𝐷, 𝐸⟩) ↔ ((𝑢𝑆𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸 ∧ 𝑢𝑅𝐷)))) |
15 | 14 | rexbidv 3178 | . . 3 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (∃𝑢 ∈ 𝐴 (𝑢(𝑅 ⋉ 𝑆)⟨𝐵, 𝐶⟩ ∧ 𝑢(𝑅 ⋉ 𝑆)⟨𝐷, 𝐸⟩) ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸 ∧ 𝑢𝑅𝐷)))) |
16 | 7, 15 | bitrid 282 | . 2 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (⟨𝐵, 𝐶⟩ ≀ ((𝑅 ⋉ 𝑆) ↾ 𝐴)⟨𝐷, 𝐸⟩ ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸 ∧ 𝑢𝑅𝐷)))) |
17 | 3, 16 | bitr3id 284 | 1 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ (𝑆 ↾ 𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸 ∧ 𝑢𝑅𝐷)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∃wrex 3070 Vcvv 3474 ⟨cop 4634 class class class wbr 5148 ↾ cres 5678 ⋉ cxrn 37037 ≀ ccoss 37038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 df-fv 6551 df-1st 7974 df-2nd 7975 df-xrn 37236 df-coss 37276 |
This theorem is referenced by: br1cossxrnidres 37316 br1cossxrncnvepres 37317 br1cossxrncnvssrres 37373 |
Copyright terms: Public domain | W3C validator |