![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cossxrnres | Structured version Visualization version GIF version |
Description: 〈𝐵, 𝐶〉 and 〈𝐷, 𝐸〉 are cosets by an range Cartesian product with a restriction: a binary relation. (Contributed by Peter Mazsa, 8-Jun-2021.) |
Ref | Expression |
---|---|
br1cossxrnres | ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (𝑆 ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸 ∧ 𝑢𝑅𝐷)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnres2 37211 | . . . 4 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆 ↾ 𝐴)) | |
2 | 1 | cosseqi 37235 | . . 3 ⊢ ≀ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ≀ (𝑅 ⋉ (𝑆 ↾ 𝐴)) |
3 | 2 | breqi 5153 | . 2 ⊢ (〈𝐵, 𝐶〉 ≀ ((𝑅 ⋉ 𝑆) ↾ 𝐴)〈𝐷, 𝐸〉 ↔ 〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (𝑆 ↾ 𝐴))〈𝐷, 𝐸〉) |
4 | opex 5463 | . . . 4 ⊢ 〈𝐵, 𝐶〉 ∈ V | |
5 | opex 5463 | . . . 4 ⊢ 〈𝐷, 𝐸〉 ∈ V | |
6 | br1cossres 37247 | . . . 4 ⊢ ((〈𝐵, 𝐶〉 ∈ V ∧ 〈𝐷, 𝐸〉 ∈ V) → (〈𝐵, 𝐶〉 ≀ ((𝑅 ⋉ 𝑆) ↾ 𝐴)〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 (𝑢(𝑅 ⋉ 𝑆)〈𝐵, 𝐶〉 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝐷, 𝐸〉))) | |
7 | 4, 5, 6 | mp2an 691 | . . 3 ⊢ (〈𝐵, 𝐶〉 ≀ ((𝑅 ⋉ 𝑆) ↾ 𝐴)〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 (𝑢(𝑅 ⋉ 𝑆)〈𝐵, 𝐶〉 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝐷, 𝐸〉)) |
8 | brxrn 37182 | . . . . . . 7 ⊢ ((𝑢 ∈ V ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝑢(𝑅 ⋉ 𝑆)〈𝐵, 𝐶〉 ↔ (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶))) | |
9 | 8 | el3v1 37025 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝑢(𝑅 ⋉ 𝑆)〈𝐵, 𝐶〉 ↔ (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶))) |
10 | brxrn 37182 | . . . . . . 7 ⊢ ((𝑢 ∈ V ∧ 𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (𝑢(𝑅 ⋉ 𝑆)〈𝐷, 𝐸〉 ↔ (𝑢𝑅𝐷 ∧ 𝑢𝑆𝐸))) | |
11 | 10 | el3v1 37025 | . . . . . 6 ⊢ ((𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (𝑢(𝑅 ⋉ 𝑆)〈𝐷, 𝐸〉 ↔ (𝑢𝑅𝐷 ∧ 𝑢𝑆𝐸))) |
12 | 9, 11 | bi2anan9 638 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → ((𝑢(𝑅 ⋉ 𝑆)〈𝐵, 𝐶〉 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝐷, 𝐸〉) ↔ ((𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶) ∧ (𝑢𝑅𝐷 ∧ 𝑢𝑆𝐸)))) |
13 | an2anr 636 | . . . . 5 ⊢ (((𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶) ∧ (𝑢𝑅𝐷 ∧ 𝑢𝑆𝐸)) ↔ ((𝑢𝑆𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸 ∧ 𝑢𝑅𝐷))) | |
14 | 12, 13 | bitrdi 287 | . . . 4 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → ((𝑢(𝑅 ⋉ 𝑆)〈𝐵, 𝐶〉 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝐷, 𝐸〉) ↔ ((𝑢𝑆𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸 ∧ 𝑢𝑅𝐷)))) |
15 | 14 | rexbidv 3179 | . . 3 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (∃𝑢 ∈ 𝐴 (𝑢(𝑅 ⋉ 𝑆)〈𝐵, 𝐶〉 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝐷, 𝐸〉) ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸 ∧ 𝑢𝑅𝐷)))) |
16 | 7, 15 | bitrid 283 | . 2 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ ((𝑅 ⋉ 𝑆) ↾ 𝐴)〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸 ∧ 𝑢𝑅𝐷)))) |
17 | 3, 16 | bitr3id 285 | 1 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (𝑆 ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸 ∧ 𝑢𝑅𝐷)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2107 ∃wrex 3071 Vcvv 3475 〈cop 4633 class class class wbr 5147 ↾ cres 5677 ⋉ cxrn 36980 ≀ ccoss 36981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7720 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fo 6546 df-fv 6548 df-1st 7970 df-2nd 7971 df-xrn 37179 df-coss 37219 |
This theorem is referenced by: br1cossxrnidres 37259 br1cossxrncnvepres 37260 br1cossxrncnvssrres 37316 |
Copyright terms: Public domain | W3C validator |