Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cossxrnres Structured version   Visualization version   GIF version

Theorem br1cossxrnres 38439
Description: 𝐵, 𝐶 and 𝐷, 𝐸 are cosets by an range Cartesian product with a restriction: a binary relation. (Contributed by Peter Mazsa, 8-Jun-2021.)
Assertion
Ref Expression
br1cossxrnres (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ (𝑆𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝑢𝑆𝐶𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸𝑢𝑅𝐷))))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝐶   𝑢,𝐷   𝑢,𝐸   𝑢,𝑅   𝑢,𝑆   𝑢,𝑉   𝑢,𝑊   𝑢,𝑋   𝑢,𝑌

Proof of Theorem br1cossxrnres
StepHypRef Expression
1 xrnres2 38389 . . . 4 ((𝑅𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆𝐴))
21cosseqi 38418 . . 3 ≀ ((𝑅𝑆) ↾ 𝐴) = ≀ (𝑅 ⋉ (𝑆𝐴))
32breqi 5113 . 2 (⟨𝐵, 𝐶⟩ ≀ ((𝑅𝑆) ↾ 𝐴)⟨𝐷, 𝐸⟩ ↔ ⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ (𝑆𝐴))⟨𝐷, 𝐸⟩)
4 opex 5424 . . . 4 𝐵, 𝐶⟩ ∈ V
5 opex 5424 . . . 4 𝐷, 𝐸⟩ ∈ V
6 br1cossres 38430 . . . 4 ((⟨𝐵, 𝐶⟩ ∈ V ∧ ⟨𝐷, 𝐸⟩ ∈ V) → (⟨𝐵, 𝐶⟩ ≀ ((𝑅𝑆) ↾ 𝐴)⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 (𝑢(𝑅𝑆)⟨𝐵, 𝐶⟩ ∧ 𝑢(𝑅𝑆)⟨𝐷, 𝐸⟩)))
74, 5, 6mp2an 692 . . 3 (⟨𝐵, 𝐶⟩ ≀ ((𝑅𝑆) ↾ 𝐴)⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 (𝑢(𝑅𝑆)⟨𝐵, 𝐶⟩ ∧ 𝑢(𝑅𝑆)⟨𝐷, 𝐸⟩))
8 brxrn 38356 . . . . . . 7 ((𝑢 ∈ V ∧ 𝐵𝑉𝐶𝑊) → (𝑢(𝑅𝑆)⟨𝐵, 𝐶⟩ ↔ (𝑢𝑅𝐵𝑢𝑆𝐶)))
98el3v1 38212 . . . . . 6 ((𝐵𝑉𝐶𝑊) → (𝑢(𝑅𝑆)⟨𝐵, 𝐶⟩ ↔ (𝑢𝑅𝐵𝑢𝑆𝐶)))
10 brxrn 38356 . . . . . . 7 ((𝑢 ∈ V ∧ 𝐷𝑋𝐸𝑌) → (𝑢(𝑅𝑆)⟨𝐷, 𝐸⟩ ↔ (𝑢𝑅𝐷𝑢𝑆𝐸)))
1110el3v1 38212 . . . . . 6 ((𝐷𝑋𝐸𝑌) → (𝑢(𝑅𝑆)⟨𝐷, 𝐸⟩ ↔ (𝑢𝑅𝐷𝑢𝑆𝐸)))
129, 11bi2anan9 638 . . . . 5 (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → ((𝑢(𝑅𝑆)⟨𝐵, 𝐶⟩ ∧ 𝑢(𝑅𝑆)⟨𝐷, 𝐸⟩) ↔ ((𝑢𝑅𝐵𝑢𝑆𝐶) ∧ (𝑢𝑅𝐷𝑢𝑆𝐸))))
13 an2anr 636 . . . . 5 (((𝑢𝑅𝐵𝑢𝑆𝐶) ∧ (𝑢𝑅𝐷𝑢𝑆𝐸)) ↔ ((𝑢𝑆𝐶𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸𝑢𝑅𝐷)))
1412, 13bitrdi 287 . . . 4 (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → ((𝑢(𝑅𝑆)⟨𝐵, 𝐶⟩ ∧ 𝑢(𝑅𝑆)⟨𝐷, 𝐸⟩) ↔ ((𝑢𝑆𝐶𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸𝑢𝑅𝐷))))
1514rexbidv 3157 . . 3 (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (∃𝑢𝐴 (𝑢(𝑅𝑆)⟨𝐵, 𝐶⟩ ∧ 𝑢(𝑅𝑆)⟨𝐷, 𝐸⟩) ↔ ∃𝑢𝐴 ((𝑢𝑆𝐶𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸𝑢𝑅𝐷))))
167, 15bitrid 283 . 2 (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ ((𝑅𝑆) ↾ 𝐴)⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝑢𝑆𝐶𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸𝑢𝑅𝐷))))
173, 16bitr3id 285 1 (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ (𝑆𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝑢𝑆𝐶𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸𝑢𝑅𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wrex 3053  Vcvv 3447  cop 4595   class class class wbr 5107  cres 5640  cxrn 38168  ccoss 38169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-1st 7968  df-2nd 7969  df-xrn 38353  df-coss 38402
This theorem is referenced by:  br1cossxrnidres  38442  br1cossxrncnvepres  38443  br1cossxrncnvssrres  38499
  Copyright terms: Public domain W3C validator