|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > an3andi | Structured version Visualization version GIF version | ||
| Description: Distribution of conjunction over threefold conjunction. (Contributed by Thierry Arnoux, 8-Apr-2019.) | 
| Ref | Expression | 
|---|---|
| an3andi | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒) ∧ (𝜑 ∧ 𝜃))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | anandi 676 | . . 3 ⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃)) ↔ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ (𝜑 ∧ 𝜃))) | |
| 2 | anandi 676 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) | |
| 3 | 1, 2 | bianbi 627 | . 2 ⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃)) ↔ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) ∧ (𝜑 ∧ 𝜃))) | 
| 4 | df-3an 1089 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
| 5 | 4 | anbi2i 623 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) ↔ (𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃))) | 
| 6 | df-3an 1089 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒) ∧ (𝜑 ∧ 𝜃)) ↔ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) ∧ (𝜑 ∧ 𝜃))) | |
| 7 | 3, 5, 6 | 3bitr4i 303 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒) ∧ (𝜑 ∧ 𝜃))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 | 
| This theorem is referenced by: raltpd 4781 | 
| Copyright terms: Public domain | W3C validator |