Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  an3andi Structured version   Visualization version   GIF version

Theorem an3andi 1474
 Description: Distribution of conjunction over threefold conjunction. (Contributed by Thierry Arnoux, 8-Apr-2019.)
Assertion
Ref Expression
an3andi ((𝜑 ∧ (𝜓𝜒𝜃)) ↔ ((𝜑𝜓) ∧ (𝜑𝜒) ∧ (𝜑𝜃)))

Proof of Theorem an3andi
StepHypRef Expression
1 df-3an 1082 . . . 4 ((𝜓𝜒𝜃) ↔ ((𝜓𝜒) ∧ 𝜃))
21anbi2i 622 . . 3 ((𝜑 ∧ (𝜓𝜒𝜃)) ↔ (𝜑 ∧ ((𝜓𝜒) ∧ 𝜃)))
3 anandi 672 . . 3 ((𝜑 ∧ ((𝜓𝜒) ∧ 𝜃)) ↔ ((𝜑 ∧ (𝜓𝜒)) ∧ (𝜑𝜃)))
4 anandi 672 . . . 4 ((𝜑 ∧ (𝜓𝜒)) ↔ ((𝜑𝜓) ∧ (𝜑𝜒)))
54anbi1i 623 . . 3 (((𝜑 ∧ (𝜓𝜒)) ∧ (𝜑𝜃)) ↔ (((𝜑𝜓) ∧ (𝜑𝜒)) ∧ (𝜑𝜃)))
62, 3, 53bitri 298 . 2 ((𝜑 ∧ (𝜓𝜒𝜃)) ↔ (((𝜑𝜓) ∧ (𝜑𝜒)) ∧ (𝜑𝜃)))
7 df-3an 1082 . 2 (((𝜑𝜓) ∧ (𝜑𝜒) ∧ (𝜑𝜃)) ↔ (((𝜑𝜓) ∧ (𝜑𝜒)) ∧ (𝜑𝜃)))
86, 7bitr4i 279 1 ((𝜑 ∧ (𝜓𝜒𝜃)) ↔ ((𝜑𝜓) ∧ (𝜑𝜒) ∧ (𝜑𝜃)))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 207   ∧ wa 396   ∧ w3a 1080 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 208  df-an 397  df-3an 1082 This theorem is referenced by:  raltpd  4629
 Copyright terms: Public domain W3C validator