Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > an3andi | Structured version Visualization version GIF version |
Description: Distribution of conjunction over threefold conjunction. (Contributed by Thierry Arnoux, 8-Apr-2019.) |
Ref | Expression |
---|---|
an3andi | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒) ∧ (𝜑 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1089 | . . . 4 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
2 | 1 | anbi2i 624 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) ↔ (𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃))) |
3 | anandi 674 | . . 3 ⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃)) ↔ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ (𝜑 ∧ 𝜃))) | |
4 | anandi 674 | . . . 4 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) | |
5 | 4 | anbi1i 625 | . . 3 ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ (𝜑 ∧ 𝜃)) ↔ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) ∧ (𝜑 ∧ 𝜃))) |
6 | 2, 3, 5 | 3bitri 297 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) ↔ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) ∧ (𝜑 ∧ 𝜃))) |
7 | df-3an 1089 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒) ∧ (𝜑 ∧ 𝜃)) ↔ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) ∧ (𝜑 ∧ 𝜃))) | |
8 | 6, 7 | bitr4i 278 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒) ∧ (𝜑 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 |
This theorem is referenced by: raltpd 4721 |
Copyright terms: Public domain | W3C validator |