| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anandi | Structured version Visualization version GIF version | ||
| Description: Distribution of conjunction over conjunction. (Contributed by NM, 14-Aug-1995.) |
| Ref | Expression |
|---|---|
| anandi | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidm 564 | . . 3 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) | |
| 2 | 1 | anbi1i 624 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
| 3 | an4 656 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) | |
| 4 | 2, 3 | bitr3i 277 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anandi3 1101 an3andi 1484 2eu4 2648 inrab 4279 uniin 4895 xpco 6262 dfpo2 6269 fin 6740 fndmin 7017 oaord 8511 nnaord 8583 ixpin 8896 isffth2 17880 fucinv 17938 setcinv 18052 rngcinv 20546 ringcinv 20580 unocv 21589 bldisj 24286 blin 24309 mbfmax 25550 mbfimaopnlem 25556 mbfaddlem 25561 i1faddlem 25594 i1fmullem 25595 lgsquadlem3 27293 numedglnl 29071 wlkeq 29562 ofpreima 32589 cntzun 33008 isunit2 33191 ordtconnlem1 33914 fneval 36340 mbfposadd 37661 anan 38217 exanres 38283 iss2 38326 1cossres 38420 prtlem70 38850 fz1eqin 42757 fgraphopab 43192 rngcinvALTV 48264 ringcinvALTV 48298 itsclc0b 48761 i0oii 48908 io1ii 48909 catcinv 49388 |
| Copyright terms: Public domain | W3C validator |