![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anandi | Structured version Visualization version GIF version |
Description: Distribution of conjunction over conjunction. (Contributed by NM, 14-Aug-1995.) |
Ref | Expression |
---|---|
anandi | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidm 564 | . . 3 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) | |
2 | 1 | anbi1i 624 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
3 | an4 656 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) | |
4 | 2, 3 | bitr3i 277 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: anandi3 1101 an3andi 1481 2eu4 2652 inrab 4321 uniin 4935 xpco 6310 dfpo2 6317 fin 6788 fndmin 7064 wfrlem5OLD 8351 oaord 8583 nnaord 8655 ixpin 8961 isffth2 17969 fucinv 18029 setcinv 18143 rngcinv 20653 ringcinv 20687 unocv 21715 bldisj 24423 blin 24446 mbfmax 25697 mbfimaopnlem 25703 mbfaddlem 25708 i1faddlem 25741 i1fmullem 25742 lgsquadlem3 27440 numedglnl 29175 wlkeq 29666 ofpreima 32681 cntzun 33053 isunit2 33229 ordtconnlem1 33884 fneval 36334 mbfposadd 37653 anan 38209 exanres 38276 iss2 38325 1cossres 38410 prtlem70 38838 fz1eqin 42756 fgraphopab 43191 rngcinvALTV 48119 ringcinvALTV 48153 itsclc0b 48621 i0oii 48715 io1ii 48716 |
Copyright terms: Public domain | W3C validator |