Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anandi | Structured version Visualization version GIF version |
Description: Distribution of conjunction over conjunction. (Contributed by NM, 14-Aug-1995.) |
Ref | Expression |
---|---|
anandi | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidm 564 | . . 3 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) | |
2 | 1 | anbi1i 623 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
3 | an4 652 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) | |
4 | 2, 3 | bitr3i 276 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: anandi3 1100 an3andi 1480 2eu4 2656 inrab 4237 uniin 4862 xpco 6181 dfpo2 6188 fin 6638 fndmin 6904 wfrlem5OLD 8115 oaord 8340 nnaord 8412 ixpin 8669 isffth2 17548 fucinv 17607 setcinv 17721 unocv 20797 bldisj 23459 blin 23482 mbfmax 24718 mbfimaopnlem 24724 mbfaddlem 24729 i1faddlem 24762 i1fmullem 24763 lgsquadlem3 26435 numedglnl 27417 wlkeq 27903 ofpreima 30904 cntzun 31222 ordtconnlem1 31776 fneval 34468 mbfposadd 35751 anan 36306 exanres 36357 iss2 36406 1cossres 36479 prtlem70 36798 fz1eqin 40507 fgraphopab 40951 rngcinv 45427 rngcinvALTV 45439 ringcinv 45478 ringcinvALTV 45502 itsclc0b 46006 i0oii 46101 io1ii 46102 |
Copyright terms: Public domain | W3C validator |