![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anandi | Structured version Visualization version GIF version |
Description: Distribution of conjunction over conjunction. (Contributed by NM, 14-Aug-1995.) |
Ref | Expression |
---|---|
anandi | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidm 564 | . . 3 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) | |
2 | 1 | anbi1i 623 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
3 | an4 655 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) | |
4 | 2, 3 | bitr3i 277 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: anandi3 1100 an3andi 1479 2eu4 2646 inrab 4307 uniin 4934 xpco 6293 dfpo2 6300 fin 6777 fndmin 7054 wfrlem5OLD 8333 oaord 8567 nnaord 8639 ixpin 8941 isffth2 17904 fucinv 17964 setcinv 18078 rngcinv 20569 ringcinv 20603 unocv 21611 bldisj 24303 blin 24326 mbfmax 25577 mbfimaopnlem 25583 mbfaddlem 25588 i1faddlem 25621 i1fmullem 25622 lgsquadlem3 27314 numedglnl 28956 wlkeq 29447 ofpreima 32450 cntzun 32774 ordtconnlem1 33525 fneval 35836 mbfposadd 37140 anan 37698 exanres 37767 iss2 37816 1cossres 37901 prtlem70 38329 fz1eqin 42189 fgraphopab 42631 rngcinvALTV 47338 ringcinvALTV 47372 itsclc0b 47845 i0oii 47938 io1ii 47939 |
Copyright terms: Public domain | W3C validator |