| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anandi | Structured version Visualization version GIF version | ||
| Description: Distribution of conjunction over conjunction. (Contributed by NM, 14-Aug-1995.) |
| Ref | Expression |
|---|---|
| anandi | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidm 564 | . . 3 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) | |
| 2 | 1 | anbi1i 624 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
| 3 | an4 656 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) | |
| 4 | 2, 3 | bitr3i 277 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anandi3 1101 an3andi 1484 2eu4 2654 inrab 4291 uniin 4907 xpco 6278 dfpo2 6285 fin 6758 fndmin 7035 wfrlem5OLD 8327 oaord 8559 nnaord 8631 ixpin 8937 isffth2 17931 fucinv 17989 setcinv 18103 rngcinv 20597 ringcinv 20631 unocv 21640 bldisj 24337 blin 24360 mbfmax 25602 mbfimaopnlem 25608 mbfaddlem 25613 i1faddlem 25646 i1fmullem 25647 lgsquadlem3 27345 numedglnl 29123 wlkeq 29614 ofpreima 32643 cntzun 33062 isunit2 33235 ordtconnlem1 33955 fneval 36370 mbfposadd 37691 anan 38247 exanres 38313 iss2 38362 1cossres 38447 prtlem70 38875 fz1eqin 42792 fgraphopab 43227 rngcinvALTV 48251 ringcinvALTV 48285 itsclc0b 48752 i0oii 48894 io1ii 48895 |
| Copyright terms: Public domain | W3C validator |