| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anandi | Structured version Visualization version GIF version | ||
| Description: Distribution of conjunction over conjunction. (Contributed by NM, 14-Aug-1995.) |
| Ref | Expression |
|---|---|
| anandi | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidm 564 | . . 3 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) | |
| 2 | 1 | anbi1i 624 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
| 3 | an4 656 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) | |
| 4 | 2, 3 | bitr3i 277 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anandi3 1101 an3andi 1484 2eu4 2652 inrab 4265 uniin 4882 xpco 6241 dfpo2 6248 fin 6708 fndmin 6984 oaord 8468 nnaord 8540 ixpin 8853 isffth2 17827 fucinv 17885 setcinv 17999 rngcinv 20554 ringcinv 20588 unocv 21619 bldisj 24314 blin 24337 mbfmax 25578 mbfimaopnlem 25584 mbfaddlem 25589 i1faddlem 25622 i1fmullem 25623 lgsquadlem3 27321 numedglnl 29124 wlkeq 29614 ofpreima 32649 cntzun 33055 isunit2 33214 ordtconnlem1 33958 fneval 36417 mbfposadd 37727 anan 38290 exanres 38353 iss2 38396 1cossres 38551 prtlem70 38976 fz1eqin 42886 fgraphopab 43320 rngcinvALTV 48400 ringcinvALTV 48434 itsclc0b 48897 i0oii 49044 io1ii 49045 catcinv 49524 |
| Copyright terms: Public domain | W3C validator |