| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anandi | Structured version Visualization version GIF version | ||
| Description: Distribution of conjunction over conjunction. (Contributed by NM, 14-Aug-1995.) |
| Ref | Expression |
|---|---|
| anandi | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidm 564 | . . 3 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) | |
| 2 | 1 | anbi1i 624 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
| 3 | an4 656 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) | |
| 4 | 2, 3 | bitr3i 277 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anandi3 1101 an3andi 1484 2eu4 2649 inrab 4282 uniin 4898 xpco 6265 dfpo2 6272 fin 6743 fndmin 7020 oaord 8514 nnaord 8586 ixpin 8899 isffth2 17887 fucinv 17945 setcinv 18059 rngcinv 20553 ringcinv 20587 unocv 21596 bldisj 24293 blin 24316 mbfmax 25557 mbfimaopnlem 25563 mbfaddlem 25568 i1faddlem 25601 i1fmullem 25602 lgsquadlem3 27300 numedglnl 29078 wlkeq 29569 ofpreima 32596 cntzun 33015 isunit2 33198 ordtconnlem1 33921 fneval 36347 mbfposadd 37668 anan 38224 exanres 38290 iss2 38333 1cossres 38427 prtlem70 38857 fz1eqin 42764 fgraphopab 43199 rngcinvALTV 48268 ringcinvALTV 48302 itsclc0b 48765 i0oii 48912 io1ii 48913 catcinv 49392 |
| Copyright terms: Public domain | W3C validator |