| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anandi | Structured version Visualization version GIF version | ||
| Description: Distribution of conjunction over conjunction. (Contributed by NM, 14-Aug-1995.) |
| Ref | Expression |
|---|---|
| anandi | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidm 564 | . . 3 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) | |
| 2 | 1 | anbi1i 624 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
| 3 | an4 656 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) | |
| 4 | 2, 3 | bitr3i 277 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anandi3 1101 an3andi 1484 2eu4 2654 inrab 4291 uniin 4907 xpco 6278 dfpo2 6285 fin 6757 fndmin 7034 wfrlem5OLD 8325 oaord 8557 nnaord 8629 ixpin 8935 isffth2 17929 fucinv 17987 setcinv 18101 rngcinv 20595 ringcinv 20629 unocv 21638 bldisj 24335 blin 24358 mbfmax 25600 mbfimaopnlem 25606 mbfaddlem 25611 i1faddlem 25644 i1fmullem 25645 lgsquadlem3 27343 numedglnl 29069 wlkeq 29560 ofpreima 32589 cntzun 33008 isunit2 33181 ordtconnlem1 33901 fneval 36316 mbfposadd 37637 anan 38193 exanres 38259 iss2 38308 1cossres 38393 prtlem70 38821 fz1eqin 42739 fgraphopab 43174 rngcinvALTV 48199 ringcinvALTV 48233 itsclc0b 48700 i0oii 48842 io1ii 48843 |
| Copyright terms: Public domain | W3C validator |