| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anandi | Structured version Visualization version GIF version | ||
| Description: Distribution of conjunction over conjunction. (Contributed by NM, 14-Aug-1995.) |
| Ref | Expression |
|---|---|
| anandi | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidm 564 | . . 3 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) | |
| 2 | 1 | anbi1i 624 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
| 3 | an4 656 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) | |
| 4 | 2, 3 | bitr3i 277 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anandi3 1101 an3andi 1484 2eu4 2648 inrab 4269 uniin 4885 xpco 6241 dfpo2 6248 fin 6708 fndmin 6983 oaord 8472 nnaord 8544 ixpin 8857 isffth2 17843 fucinv 17901 setcinv 18015 rngcinv 20540 ringcinv 20574 unocv 21605 bldisj 24302 blin 24325 mbfmax 25566 mbfimaopnlem 25572 mbfaddlem 25577 i1faddlem 25610 i1fmullem 25611 lgsquadlem3 27309 numedglnl 29107 wlkeq 29597 ofpreima 32622 cntzun 33034 isunit2 33190 ordtconnlem1 33890 fneval 36325 mbfposadd 37646 anan 38202 exanres 38268 iss2 38311 1cossres 38405 prtlem70 38835 fz1eqin 42742 fgraphopab 43176 rngcinvALTV 48261 ringcinvALTV 48295 itsclc0b 48758 i0oii 48905 io1ii 48906 catcinv 49385 |
| Copyright terms: Public domain | W3C validator |