![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anandi | Structured version Visualization version GIF version |
Description: Distribution of conjunction over conjunction. (Contributed by NM, 14-Aug-1995.) |
Ref | Expression |
---|---|
anandi | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidm 564 | . . 3 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) | |
2 | 1 | anbi1i 623 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
3 | an4 655 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) | |
4 | 2, 3 | bitr3i 277 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: anandi3 1102 an3andi 1482 2eu4 2658 inrab 4335 uniin 4955 xpco 6320 dfpo2 6327 fin 6801 fndmin 7078 wfrlem5OLD 8369 oaord 8603 nnaord 8675 ixpin 8981 isffth2 17983 fucinv 18043 setcinv 18157 rngcinv 20659 ringcinv 20693 unocv 21721 bldisj 24429 blin 24452 mbfmax 25703 mbfimaopnlem 25709 mbfaddlem 25714 i1faddlem 25747 i1fmullem 25748 lgsquadlem3 27444 numedglnl 29179 wlkeq 29670 ofpreima 32683 cntzun 33044 isunit2 33220 ordtconnlem1 33870 fneval 36318 mbfposadd 37627 anan 38183 exanres 38251 iss2 38300 1cossres 38385 prtlem70 38813 fz1eqin 42725 fgraphopab 43164 rngcinvALTV 47999 ringcinvALTV 48033 itsclc0b 48506 i0oii 48599 io1ii 48600 |
Copyright terms: Public domain | W3C validator |