| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anandi | Structured version Visualization version GIF version | ||
| Description: Distribution of conjunction over conjunction. (Contributed by NM, 14-Aug-1995.) |
| Ref | Expression |
|---|---|
| anandi | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidm 564 | . . 3 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) | |
| 2 | 1 | anbi1i 624 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
| 3 | an4 656 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) | |
| 4 | 2, 3 | bitr3i 277 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anandi3 1101 an3andi 1484 2eu4 2650 inrab 4266 uniin 4883 xpco 6236 dfpo2 6243 fin 6703 fndmin 6978 oaord 8462 nnaord 8534 ixpin 8847 isffth2 17822 fucinv 17880 setcinv 17994 rngcinv 20550 ringcinv 20584 unocv 21615 bldisj 24311 blin 24334 mbfmax 25575 mbfimaopnlem 25581 mbfaddlem 25586 i1faddlem 25619 i1fmullem 25620 lgsquadlem3 27318 numedglnl 29120 wlkeq 29610 ofpreima 32642 cntzun 33043 isunit2 33202 ordtconnlem1 33932 fneval 36385 mbfposadd 37706 anan 38262 exanres 38328 iss2 38371 1cossres 38465 prtlem70 38895 fz1eqin 42801 fgraphopab 43235 rngcinvALTV 48306 ringcinvALTV 48340 itsclc0b 48803 i0oii 48950 io1ii 48951 catcinv 49430 |
| Copyright terms: Public domain | W3C validator |