Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anandi | Structured version Visualization version GIF version |
Description: Distribution of conjunction over conjunction. (Contributed by NM, 14-Aug-1995.) |
Ref | Expression |
---|---|
anandi | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidm 565 | . . 3 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) | |
2 | 1 | anbi1i 624 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
3 | an4 653 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) | |
4 | 2, 3 | bitr3i 276 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: anandi3 1101 an3andi 1481 2eu4 2656 inrab 4240 uniin 4865 xpco 6192 dfpo2 6199 fin 6654 fndmin 6922 wfrlem5OLD 8144 oaord 8378 nnaord 8450 ixpin 8711 isffth2 17632 fucinv 17691 setcinv 17805 unocv 20885 bldisj 23551 blin 23574 mbfmax 24813 mbfimaopnlem 24819 mbfaddlem 24824 i1faddlem 24857 i1fmullem 24858 lgsquadlem3 26530 numedglnl 27514 wlkeq 28001 ofpreima 31002 cntzun 31320 ordtconnlem1 31874 fneval 34541 mbfposadd 35824 anan 36379 exanres 36430 iss2 36479 1cossres 36552 prtlem70 36871 fz1eqin 40591 fgraphopab 41035 rngcinv 45539 rngcinvALTV 45551 ringcinv 45590 ringcinvALTV 45614 itsclc0b 46118 i0oii 46213 io1ii 46214 |
Copyright terms: Public domain | W3C validator |