MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raltpd Structured version   Visualization version   GIF version

Theorem raltpd 4714
Description: Convert a universal quantification over an unordered triple to a conjunction. (Contributed by Thierry Arnoux, 8-Apr-2019.)
Hypotheses
Ref Expression
ralprd.1 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
ralprd.2 ((𝜑𝑥 = 𝐵) → (𝜓𝜃))
raltpd.3 ((𝜑𝑥 = 𝐶) → (𝜓𝜏))
ralprd.a (𝜑𝐴𝑉)
ralprd.b (𝜑𝐵𝑊)
raltpd.c (𝜑𝐶𝑋)
Assertion
Ref Expression
raltpd (𝜑 → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜓 ↔ (𝜒𝜃𝜏)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)

Proof of Theorem raltpd
StepHypRef Expression
1 an3andi 1480 . . . . . 6 ((𝜑 ∧ (𝜒𝜃𝜏)) ↔ ((𝜑𝜒) ∧ (𝜑𝜃) ∧ (𝜑𝜏)))
21a1i 11 . . . . 5 (𝜑 → ((𝜑 ∧ (𝜒𝜃𝜏)) ↔ ((𝜑𝜒) ∧ (𝜑𝜃) ∧ (𝜑𝜏))))
3 ralprd.a . . . . . 6 (𝜑𝐴𝑉)
4 ralprd.b . . . . . 6 (𝜑𝐵𝑊)
5 raltpd.c . . . . . 6 (𝜑𝐶𝑋)
6 ralprd.1 . . . . . . . . 9 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
76expcom 413 . . . . . . . 8 (𝑥 = 𝐴 → (𝜑 → (𝜓𝜒)))
87pm5.32d 576 . . . . . . 7 (𝑥 = 𝐴 → ((𝜑𝜓) ↔ (𝜑𝜒)))
9 ralprd.2 . . . . . . . . 9 ((𝜑𝑥 = 𝐵) → (𝜓𝜃))
109expcom 413 . . . . . . . 8 (𝑥 = 𝐵 → (𝜑 → (𝜓𝜃)))
1110pm5.32d 576 . . . . . . 7 (𝑥 = 𝐵 → ((𝜑𝜓) ↔ (𝜑𝜃)))
12 raltpd.3 . . . . . . . . 9 ((𝜑𝑥 = 𝐶) → (𝜓𝜏))
1312expcom 413 . . . . . . . 8 (𝑥 = 𝐶 → (𝜑 → (𝜓𝜏)))
1413pm5.32d 576 . . . . . . 7 (𝑥 = 𝐶 → ((𝜑𝜓) ↔ (𝜑𝜏)))
158, 11, 14raltpg 4631 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶} (𝜑𝜓) ↔ ((𝜑𝜒) ∧ (𝜑𝜃) ∧ (𝜑𝜏))))
163, 4, 5, 15syl3anc 1369 . . . . 5 (𝜑 → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶} (𝜑𝜓) ↔ ((𝜑𝜒) ∧ (𝜑𝜃) ∧ (𝜑𝜏))))
173tpnzd 4713 . . . . . 6 (𝜑 → {𝐴, 𝐵, 𝐶} ≠ ∅)
18 r19.28zv 4428 . . . . . 6 ({𝐴, 𝐵, 𝐶} ≠ ∅ → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶} (𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜓)))
1917, 18syl 17 . . . . 5 (𝜑 → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶} (𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜓)))
202, 16, 193bitr2d 306 . . . 4 (𝜑 → ((𝜑 ∧ (𝜒𝜃𝜏)) ↔ (𝜑 ∧ ∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜓)))
2120bianabs 541 . . 3 (𝜑 → ((𝜑 ∧ (𝜒𝜃𝜏)) ↔ ∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜓))
2221bicomd 222 . 2 (𝜑 → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜓 ↔ (𝜑 ∧ (𝜒𝜃𝜏))))
2322bianabs 541 1 (𝜑 → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜓 ↔ (𝜒𝜃𝜏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  c0 4253  {ctp 4562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-sn 4559  df-pr 4561  df-tp 4563
This theorem is referenced by:  eqwrds3  14604  trgcgrg  26780  tgcgr4  26796  cplgr3v  27705
  Copyright terms: Public domain W3C validator