Proof of Theorem raltpd
| Step | Hyp | Ref
| Expression |
| 1 | | an3andi 1484 |
. . . . . 6
⊢ ((𝜑 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜑 ∧ 𝜃) ∧ (𝜑 ∧ 𝜏))) |
| 2 | 1 | a1i 11 |
. . . . 5
⊢ (𝜑 → ((𝜑 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜑 ∧ 𝜃) ∧ (𝜑 ∧ 𝜏)))) |
| 3 | | ralprd.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 4 | | ralprd.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| 5 | | raltpd.c |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| 6 | | ralprd.1 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
| 7 | 6 | expcom 413 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝜑 → (𝜓 ↔ 𝜒))) |
| 8 | 7 | pm5.32d 577 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒))) |
| 9 | | ralprd.2 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜃)) |
| 10 | 9 | expcom 413 |
. . . . . . . 8
⊢ (𝑥 = 𝐵 → (𝜑 → (𝜓 ↔ 𝜃))) |
| 11 | 10 | pm5.32d 577 |
. . . . . . 7
⊢ (𝑥 = 𝐵 → ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜃))) |
| 12 | | raltpd.3 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → (𝜓 ↔ 𝜏)) |
| 13 | 12 | expcom 413 |
. . . . . . . 8
⊢ (𝑥 = 𝐶 → (𝜑 → (𝜓 ↔ 𝜏))) |
| 14 | 13 | pm5.32d 577 |
. . . . . . 7
⊢ (𝑥 = 𝐶 → ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜏))) |
| 15 | 8, 11, 14 | raltpg 4698 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶} (𝜑 ∧ 𝜓) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜑 ∧ 𝜃) ∧ (𝜑 ∧ 𝜏)))) |
| 16 | 3, 4, 5, 15 | syl3anc 1373 |
. . . . 5
⊢ (𝜑 → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶} (𝜑 ∧ 𝜓) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜑 ∧ 𝜃) ∧ (𝜑 ∧ 𝜏)))) |
| 17 | 3 | tpnzd 4780 |
. . . . . 6
⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ≠ ∅) |
| 18 | | r19.28zv 4501 |
. . . . . 6
⊢ ({𝐴, 𝐵, 𝐶} ≠ ∅ → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶} (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜓))) |
| 19 | 17, 18 | syl 17 |
. . . . 5
⊢ (𝜑 → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶} (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜓))) |
| 20 | 2, 16, 19 | 3bitr2d 307 |
. . . 4
⊢ (𝜑 → ((𝜑 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏)) ↔ (𝜑 ∧ ∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜓))) |
| 21 | 20 | bianabs 541 |
. . 3
⊢ (𝜑 → ((𝜑 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏)) ↔ ∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜓)) |
| 22 | 21 | bicomd 223 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜓 ↔ (𝜑 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏)))) |
| 23 | 22 | bianabs 541 |
1
⊢ (𝜑 → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜓 ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) |