Proof of Theorem raltpd
Step | Hyp | Ref
| Expression |
1 | | an3andi 1480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜑 ∧ 𝜃) ∧ (𝜑 ∧ 𝜏))) |
2 | 1 | a1i 11 |
. . . . 5
⊢ (𝜑 → ((𝜑 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜑 ∧ 𝜃) ∧ (𝜑 ∧ 𝜏)))) |
3 | | ralprd.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
4 | | ralprd.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
5 | | raltpd.c |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ 𝑋) |
6 | | ralprd.1 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
7 | 6 | expcom 413 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝜑 → (𝜓 ↔ 𝜒))) |
8 | 7 | pm5.32d 576 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒))) |
9 | | ralprd.2 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜃)) |
10 | 9 | expcom 413 |
. . . . . . . 8
⊢ (𝑥 = 𝐵 → (𝜑 → (𝜓 ↔ 𝜃))) |
11 | 10 | pm5.32d 576 |
. . . . . . 7
⊢ (𝑥 = 𝐵 → ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜃))) |
12 | | raltpd.3 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → (𝜓 ↔ 𝜏)) |
13 | 12 | expcom 413 |
. . . . . . . 8
⊢ (𝑥 = 𝐶 → (𝜑 → (𝜓 ↔ 𝜏))) |
14 | 13 | pm5.32d 576 |
. . . . . . 7
⊢ (𝑥 = 𝐶 → ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜏))) |
15 | 8, 11, 14 | raltpg 4631 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶} (𝜑 ∧ 𝜓) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜑 ∧ 𝜃) ∧ (𝜑 ∧ 𝜏)))) |
16 | 3, 4, 5, 15 | syl3anc 1369 |
. . . . 5
⊢ (𝜑 → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶} (𝜑 ∧ 𝜓) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜑 ∧ 𝜃) ∧ (𝜑 ∧ 𝜏)))) |
17 | 3 | tpnzd 4713 |
. . . . . 6
⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ≠ ∅) |
18 | | r19.28zv 4428 |
. . . . . 6
⊢ ({𝐴, 𝐵, 𝐶} ≠ ∅ → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶} (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜓))) |
19 | 17, 18 | syl 17 |
. . . . 5
⊢ (𝜑 → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶} (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜓))) |
20 | 2, 16, 19 | 3bitr2d 306 |
. . . 4
⊢ (𝜑 → ((𝜑 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏)) ↔ (𝜑 ∧ ∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜓))) |
21 | 20 | bianabs 541 |
. . 3
⊢ (𝜑 → ((𝜑 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏)) ↔ ∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜓)) |
22 | 21 | bicomd 222 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜓 ↔ (𝜑 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏)))) |
23 | 22 | bianabs 541 |
1
⊢ (𝜑 → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜓 ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) |