| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bianbi | Structured version Visualization version GIF version | ||
| Description: Exchanging conjunction in a biconditional. (Contributed by Peter Mazsa, 31-Jul-2023.) |
| Ref | Expression |
|---|---|
| bianbi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| bianbi.2 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| bianbi | ⊢ (𝜑 ↔ (𝜃 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bianbi.1 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | bianbi.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
| 3 | 2 | anbi1i 624 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜃 ∧ 𝜒)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝜑 ↔ (𝜃 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anbi12i 628 bianassc 643 pm5.53 1006 dfifp4 1066 dfifp5 1067 an6 1447 an3andi 1484 19.28v 1996 19.28 2229 2eu4 2648 r19.26-3 3090 r19.41v 3159 r3ex 3168 3reeanv 3202 r19.41 3233 rmo4 3690 rmo3f 3694 sbc3an 3807 rmo3 3841 difin2 4252 otelxp 5663 f1ounsn 7209 dfpth2 29674 dfrefrel5 38504 dfantisymrel4 38749 dfantisymrel5 38750 redvmptabs 42343 permaxsep 44991 clnbgrel 47822 grimuhgr 47881 catcinv 49394 |
| Copyright terms: Public domain | W3C validator |