MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bianbi Structured version   Visualization version   GIF version

Theorem bianbi 627
Description: Exchanging conjunction in a biconditional. (Contributed by Peter Mazsa, 31-Jul-2023.)
Hypotheses
Ref Expression
bianbi.1 (𝜑 ↔ (𝜓𝜒))
bianbi.2 (𝜓𝜃)
Assertion
Ref Expression
bianbi (𝜑 ↔ (𝜃𝜒))

Proof of Theorem bianbi
StepHypRef Expression
1 bianbi.1 . 2 (𝜑 ↔ (𝜓𝜒))
2 bianbi.2 . . 3 (𝜓𝜃)
32anbi1i 624 . 2 ((𝜓𝜒) ↔ (𝜃𝜒))
41, 3bitri 275 1 (𝜑 ↔ (𝜃𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  anbi12i  628  bianassc  643  pm5.53  1006  dfifp4  1066  dfifp5  1067  an6  1447  an3andi  1484  19.28v  1996  19.28  2229  2eu4  2648  r19.26-3  3090  r19.41v  3159  r3ex  3168  3reeanv  3202  r19.41  3233  rmo4  3690  rmo3f  3694  sbc3an  3807  rmo3  3841  difin2  4252  otelxp  5663  f1ounsn  7209  dfpth2  29674  dfrefrel5  38504  dfantisymrel4  38749  dfantisymrel5  38750  redvmptabs  42343  permaxsep  44991  clnbgrel  47822  grimuhgr  47881  catcinv  49394
  Copyright terms: Public domain W3C validator