MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bianbi Structured version   Visualization version   GIF version

Theorem bianbi 627
Description: Exchanging conjunction in a biconditional. (Contributed by Peter Mazsa, 31-Jul-2023.)
Hypotheses
Ref Expression
bianbi.1 (𝜑 ↔ (𝜓𝜒))
bianbi.2 (𝜓𝜃)
Assertion
Ref Expression
bianbi (𝜑 ↔ (𝜃𝜒))

Proof of Theorem bianbi
StepHypRef Expression
1 bianbi.1 . 2 (𝜑 ↔ (𝜓𝜒))
2 bianbi.2 . . 3 (𝜓𝜃)
32anbi1i 624 . 2 ((𝜓𝜒) ↔ (𝜃𝜒))
41, 3bitri 275 1 (𝜑 ↔ (𝜃𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  anbi12i  628  bianassc  643  pm5.53  1006  dfifp4  1066  dfifp5  1067  an6  1446  an3andi  1483  19.28v  1989  19.28  2227  2eu4  2653  r19.26-3  3099  r19.41v  3176  r3ex  3185  3reeanv  3217  r19.41  3250  rmo4  3720  rmo3f  3724  sbc3an  3837  rmo3  3871  difin2  4283  otelxp  5711  f1ounsn  7275  dfpth2  29696  dfrefrel5  38459  dfantisymrel4  38703  dfantisymrel5  38704  redvmptabs  42335  clnbgrel  47761  grimuhgr  47824
  Copyright terms: Public domain W3C validator