![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bianbi | Structured version Visualization version GIF version |
Description: Exchanging conjunction in a biconditional. (Contributed by Peter Mazsa, 31-Jul-2023.) |
Ref | Expression |
---|---|
bianbi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
bianbi.2 | ⊢ (𝜓 ↔ 𝜃) |
Ref | Expression |
---|---|
bianbi | ⊢ (𝜑 ↔ (𝜃 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bianbi.1 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | bianbi.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
3 | 2 | anbi1i 624 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜃 ∧ 𝜒)) |
4 | 1, 3 | bitri 275 | 1 ⊢ (𝜑 ↔ (𝜃 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: anbi12i 628 bianassc 643 pm5.53 1006 dfifp4 1066 dfifp5 1067 an3andi 1481 19.28v 1988 19.28 2226 2eu4 2653 r19.26-3 3110 r19.41v 3187 r3ex 3196 3reeanv 3228 r19.41 3261 rmo4 3739 rmo3f 3743 sbc3an 3861 rmo3 3898 difin2 4307 otelxp 5733 f1ounsn 7292 dfrefrel5 38499 dfantisymrel4 38743 dfantisymrel5 38744 redvmptabs 42369 clnbgrel 47753 grimuhgr 47816 |
Copyright terms: Public domain | W3C validator |