| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bianbi | Structured version Visualization version GIF version | ||
| Description: Exchanging conjunction in a biconditional. (Contributed by Peter Mazsa, 31-Jul-2023.) |
| Ref | Expression |
|---|---|
| bianbi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| bianbi.2 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| bianbi | ⊢ (𝜑 ↔ (𝜃 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bianbi.1 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | bianbi.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
| 3 | 2 | anbi1i 624 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜃 ∧ 𝜒)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝜑 ↔ (𝜃 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anbi12i 628 bianassc 643 pm5.53 1006 dfifp4 1066 dfifp5 1067 an6 1447 an3andi 1484 19.28v 1996 19.28 2229 2eu4 2648 r19.26-3 3092 r19.41v 3165 r3ex 3174 3reeanv 3208 r19.41 3239 rmo4 3698 rmo3f 3702 sbc3an 3815 rmo3 3849 difin2 4260 otelxp 5675 f1ounsn 7229 dfpth2 29709 dfrefrel5 38501 dfantisymrel4 38746 dfantisymrel5 38747 redvmptabs 42341 permaxsep 44990 clnbgrel 47822 grimuhgr 47880 catcinv 49381 |
| Copyright terms: Public domain | W3C validator |