MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bianbi Structured version   Visualization version   GIF version

Theorem bianbi 627
Description: Exchanging conjunction in a biconditional. (Contributed by Peter Mazsa, 31-Jul-2023.)
Hypotheses
Ref Expression
bianbi.1 (𝜑 ↔ (𝜓𝜒))
bianbi.2 (𝜓𝜃)
Assertion
Ref Expression
bianbi (𝜑 ↔ (𝜃𝜒))

Proof of Theorem bianbi
StepHypRef Expression
1 bianbi.1 . 2 (𝜑 ↔ (𝜓𝜒))
2 bianbi.2 . . 3 (𝜓𝜃)
32anbi1i 624 . 2 ((𝜓𝜒) ↔ (𝜃𝜒))
41, 3bitri 275 1 (𝜑 ↔ (𝜃𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  anbi12i  628  bianassc  643  pm5.53  1006  dfifp4  1066  dfifp5  1067  an6  1447  an3andi  1484  19.28v  1996  19.28  2229  2eu4  2649  r19.26-3  3093  r19.41v  3168  r3ex  3177  3reeanv  3211  r19.41  3242  rmo4  3703  rmo3f  3707  sbc3an  3820  rmo3  3854  difin2  4266  otelxp  5684  f1ounsn  7249  dfpth2  29665  dfrefrel5  38503  dfantisymrel4  38748  dfantisymrel5  38749  redvmptabs  42343  permaxsep  44990  clnbgrel  47819  grimuhgr  47877  catcinv  49378
  Copyright terms: Public domain W3C validator