![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bianbi | Structured version Visualization version GIF version |
Description: Exchanging conjunction in a biconditional. (Contributed by Peter Mazsa, 31-Jul-2023.) |
Ref | Expression |
---|---|
bianbi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
bianbi.2 | ⊢ (𝜓 ↔ 𝜃) |
Ref | Expression |
---|---|
bianbi | ⊢ (𝜑 ↔ (𝜃 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bianbi.1 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | bianbi.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
3 | 2 | anbi1i 623 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜃 ∧ 𝜒)) |
4 | 1, 3 | bitri 275 | 1 ⊢ (𝜑 ↔ (𝜃 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: anbi12i 627 bianassc 642 pm5.53 1005 dfifp4 1067 dfifp5 1068 an3andi 1482 19.28v 1990 19.28 2229 2eu4 2658 r19.26-3 3118 r19.41v 3195 r3ex 3204 3reeanv 3236 r19.41 3269 rmo4 3752 rmo3f 3756 sbc3an 3874 rmo3 3911 difin2 4320 otelxp 5744 dfrefrel5 38473 dfantisymrel4 38717 dfantisymrel5 38718 clnbgrel 47701 grimuhgr 47762 |
Copyright terms: Public domain | W3C validator |