| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bianbi | Structured version Visualization version GIF version | ||
| Description: Exchanging conjunction in a biconditional. (Contributed by Peter Mazsa, 31-Jul-2023.) |
| Ref | Expression |
|---|---|
| bianbi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| bianbi.2 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| bianbi | ⊢ (𝜑 ↔ (𝜃 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bianbi.1 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | bianbi.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
| 3 | 2 | anbi1i 624 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜃 ∧ 𝜒)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝜑 ↔ (𝜃 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anbi12i 628 bianassc 643 pm5.53 1006 dfifp4 1066 dfifp5 1067 an6 1447 an3andi 1484 19.28v 1997 19.28 2231 2eu4 2650 r19.26-3 3093 r19.41v 3162 r3ex 3171 3reeanv 3205 r19.41 3236 rmo4 3684 rmo3f 3688 sbc3an 3801 rmo3 3835 difin2 4248 otelxp 5658 f1ounsn 7206 dfpth2 29707 dfrefrel5 38608 dfantisymrel4 38858 dfantisymrel5 38859 redvmptabs 42452 permaxsep 45099 clnbgrel 47927 grimuhgr 47986 catcinv 49499 |
| Copyright terms: Public domain | W3C validator |