| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bianbi | Structured version Visualization version GIF version | ||
| Description: Exchanging conjunction in a biconditional. (Contributed by Peter Mazsa, 31-Jul-2023.) |
| Ref | Expression |
|---|---|
| bianbi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| bianbi.2 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| bianbi | ⊢ (𝜑 ↔ (𝜃 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bianbi.1 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | bianbi.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
| 3 | 2 | anbi1i 624 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜃 ∧ 𝜒)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝜑 ↔ (𝜃 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anbi12i 628 bianassc 643 pm5.53 1006 dfifp4 1066 dfifp5 1067 an6 1447 an3andi 1484 19.28v 1996 19.28 2229 2eu4 2649 r19.26-3 3093 r19.41v 3168 r3ex 3177 3reeanv 3211 r19.41 3242 rmo4 3703 rmo3f 3707 sbc3an 3820 rmo3 3854 difin2 4266 otelxp 5684 f1ounsn 7249 dfpth2 29665 dfrefrel5 38503 dfantisymrel4 38748 dfantisymrel5 38749 redvmptabs 42343 permaxsep 44990 clnbgrel 47819 grimuhgr 47877 catcinv 49378 |
| Copyright terms: Public domain | W3C validator |