| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bianbi | Structured version Visualization version GIF version | ||
| Description: Exchanging conjunction in a biconditional. (Contributed by Peter Mazsa, 31-Jul-2023.) |
| Ref | Expression |
|---|---|
| bianbi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| bianbi.2 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| bianbi | ⊢ (𝜑 ↔ (𝜃 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bianbi.1 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | bianbi.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
| 3 | 2 | anbi1i 624 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜃 ∧ 𝜒)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝜑 ↔ (𝜃 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anbi12i 628 bianassc 643 pm5.53 1006 dfifp4 1066 dfifp5 1067 an6 1446 an3andi 1483 19.28v 1989 19.28 2227 2eu4 2653 r19.26-3 3099 r19.41v 3176 r3ex 3185 3reeanv 3217 r19.41 3250 rmo4 3720 rmo3f 3724 sbc3an 3837 rmo3 3871 difin2 4283 otelxp 5711 f1ounsn 7275 dfpth2 29696 dfrefrel5 38459 dfantisymrel4 38703 dfantisymrel5 38704 redvmptabs 42335 clnbgrel 47761 grimuhgr 47824 |
| Copyright terms: Public domain | W3C validator |