Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  intn3an3d Structured version   Visualization version   GIF version

Theorem intn3an3d 1478
 Description: Introduction of a triple conjunct inside a contradiction. (Contributed by FL, 27-Dec-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Hypothesis
Ref Expression
intn3and.1 (𝜑 → ¬ 𝜓)
Assertion
Ref Expression
intn3an3d (𝜑 → ¬ (𝜒𝜃𝜓))

Proof of Theorem intn3an3d
StepHypRef Expression
1 intn3and.1 . 2 (𝜑 → ¬ 𝜓)
2 simp3 1135 . 2 ((𝜒𝜃𝜓) → 𝜓)
31, 2nsyl 142 1 (𝜑 → ¬ (𝜒𝜃𝜓))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ w3a 1084 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1086 This theorem is referenced by:  en3lp  9065  winainflem  10108  ccatalpha  13942  clwwlk  27772  gtnelioc  42125  icccncfext  42526  fourierdlem10  42756
 Copyright terms: Public domain W3C validator