| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intn3an3d | Structured version Visualization version GIF version | ||
| Description: Introduction of a triple conjunct inside a contradiction. (Contributed by FL, 27-Dec-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| intn3and.1 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| intn3an3d | ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜃 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intn3and.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | simp3 1139 | . 2 ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜓) → 𝜓) | |
| 3 | 1, 2 | nsyl 140 | 1 ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜃 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
| This theorem is referenced by: frxp2 8169 frxp3 8176 en3lp 9654 winainflem 10733 ccatalpha 14631 psdmul 22170 clwwlk 30002 nlimsuc 43454 gtnelioc 45504 icccncfext 45902 fourierdlem10 46132 |
| Copyright terms: Public domain | W3C validator |