| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an43 | Structured version Visualization version GIF version | ||
| Description: Rearrangement of 4 conjuncts. (Contributed by Rodolfo Medina, 24-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| an43 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an42 657 | . 2 ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | |
| 2 | 1 | bicomi 224 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: an3 659 elfzuzb 13540 13an22anass 32450 bj-xpcossxp 37212 prtlem15 38898 an4com24 47264 |
| Copyright terms: Public domain | W3C validator |