MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  an43 Structured version   Visualization version   GIF version

Theorem an43 654
Description: Rearrangement of 4 conjuncts. (Contributed by Rodolfo Medina, 24-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
an43 (((𝜑𝜓) ∧ (𝜒𝜃)) ↔ ((𝜑𝜃) ∧ (𝜓𝜒)))

Proof of Theorem an43
StepHypRef Expression
1 an42 653 . 2 (((𝜑𝜃) ∧ (𝜓𝜒)) ↔ ((𝜑𝜓) ∧ (𝜒𝜃)))
21bicomi 223 1 (((𝜑𝜓) ∧ (𝜒𝜃)) ↔ ((𝜑𝜃) ∧ (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  an3  655  elfzuzb  13232  bj-xpcossxp  35339  prtlem15  36868  an4com24  44711
  Copyright terms: Public domain W3C validator