Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-xpcossxp Structured version   Visualization version   GIF version

Theorem bj-xpcossxp 34604
Description: The composition of two Cartesian products is included in the expected Cartesian product. There is equality if (𝐵𝐶) ≠ ∅, see xpcogend 14325. (Contributed by BJ, 22-May-2024.)
Assertion
Ref Expression
bj-xpcossxp ((𝐶 × 𝐷) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐷)

Proof of Theorem bj-xpcossxp
Dummy variables 𝑥 𝑦 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brxp 5565 . . . . . . 7 (𝑥(𝐴 × 𝐵)𝑦 ↔ (𝑥𝐴𝑦𝐵))
2 brxp 5565 . . . . . . 7 (𝑦(𝐶 × 𝐷)𝑡 ↔ (𝑦𝐶𝑡𝐷))
31, 2anbi12i 629 . . . . . 6 ((𝑥(𝐴 × 𝐵)𝑦𝑦(𝐶 × 𝐷)𝑡) ↔ ((𝑥𝐴𝑦𝐵) ∧ (𝑦𝐶𝑡𝐷)))
4 an43 657 . . . . . 6 (((𝑥𝐴𝑦𝐵) ∧ (𝑦𝐶𝑡𝐷)) ↔ ((𝑥𝐴𝑡𝐷) ∧ (𝑦𝐵𝑦𝐶)))
53, 4bitri 278 . . . . 5 ((𝑥(𝐴 × 𝐵)𝑦𝑦(𝐶 × 𝐷)𝑡) ↔ ((𝑥𝐴𝑡𝐷) ∧ (𝑦𝐵𝑦𝐶)))
65exbii 1849 . . . 4 (∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐶 × 𝐷)𝑡) ↔ ∃𝑦((𝑥𝐴𝑡𝐷) ∧ (𝑦𝐵𝑦𝐶)))
7 19.42v 1954 . . . . 5 (∃𝑦((𝑥𝐴𝑡𝐷) ∧ (𝑦𝐵𝑦𝐶)) ↔ ((𝑥𝐴𝑡𝐷) ∧ ∃𝑦(𝑦𝐵𝑦𝐶)))
87simplbi 501 . . . 4 (∃𝑦((𝑥𝐴𝑡𝐷) ∧ (𝑦𝐵𝑦𝐶)) → (𝑥𝐴𝑡𝐷))
96, 8sylbi 220 . . 3 (∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐶 × 𝐷)𝑡) → (𝑥𝐴𝑡𝐷))
109ssopab2i 5402 . 2 {⟨𝑥, 𝑡⟩ ∣ ∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐶 × 𝐷)𝑡)} ⊆ {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐴𝑡𝐷)}
11 df-co 5528 . 2 ((𝐶 × 𝐷) ∘ (𝐴 × 𝐵)) = {⟨𝑥, 𝑡⟩ ∣ ∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐶 × 𝐷)𝑡)}
12 df-xp 5525 . 2 (𝐴 × 𝐷) = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐴𝑡𝐷)}
1310, 11, 123sstr4i 3958 1 ((𝐶 × 𝐷) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wa 399  wex 1781  wcel 2111  wss 3881   class class class wbr 5030  {copab 5092   × cxp 5517  ccom 5523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-xp 5525  df-co 5528
This theorem is referenced by:  bj-imdirco  34605
  Copyright terms: Public domain W3C validator