Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-xpcossxp | Structured version Visualization version GIF version |
Description: The composition of two Cartesian products is included in the expected Cartesian product. There is equality if (𝐵 ∩ 𝐶) ≠ ∅, see xpcogend 14613. (Contributed by BJ, 22-May-2024.) |
Ref | Expression |
---|---|
bj-xpcossxp | ⊢ ((𝐶 × 𝐷) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brxp 5627 | . . . . . . 7 ⊢ (𝑥(𝐴 × 𝐵)𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
2 | brxp 5627 | . . . . . . 7 ⊢ (𝑦(𝐶 × 𝐷)𝑡 ↔ (𝑦 ∈ 𝐶 ∧ 𝑡 ∈ 𝐷)) | |
3 | 1, 2 | anbi12i 626 | . . . . . 6 ⊢ ((𝑥(𝐴 × 𝐵)𝑦 ∧ 𝑦(𝐶 × 𝐷)𝑡) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ∧ 𝑡 ∈ 𝐷))) |
4 | an43 654 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ∧ 𝑡 ∈ 𝐷)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐷) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
5 | 3, 4 | bitri 274 | . . . . 5 ⊢ ((𝑥(𝐴 × 𝐵)𝑦 ∧ 𝑦(𝐶 × 𝐷)𝑡) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐷) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
6 | 5 | exbii 1851 | . . . 4 ⊢ (∃𝑦(𝑥(𝐴 × 𝐵)𝑦 ∧ 𝑦(𝐶 × 𝐷)𝑡) ↔ ∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐷) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
7 | 19.42v 1958 | . . . . 5 ⊢ (∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐷) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐷) ∧ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
8 | 7 | simplbi 497 | . . . 4 ⊢ (∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐷) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) → (𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐷)) |
9 | 6, 8 | sylbi 216 | . . 3 ⊢ (∃𝑦(𝑥(𝐴 × 𝐵)𝑦 ∧ 𝑦(𝐶 × 𝐷)𝑡) → (𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐷)) |
10 | 9 | ssopab2i 5456 | . 2 ⊢ {〈𝑥, 𝑡〉 ∣ ∃𝑦(𝑥(𝐴 × 𝐵)𝑦 ∧ 𝑦(𝐶 × 𝐷)𝑡)} ⊆ {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐷)} |
11 | df-co 5589 | . 2 ⊢ ((𝐶 × 𝐷) ∘ (𝐴 × 𝐵)) = {〈𝑥, 𝑡〉 ∣ ∃𝑦(𝑥(𝐴 × 𝐵)𝑦 ∧ 𝑦(𝐶 × 𝐷)𝑡)} | |
12 | df-xp 5586 | . 2 ⊢ (𝐴 × 𝐷) = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐷)} | |
13 | 10, 11, 12 | 3sstr4i 3960 | 1 ⊢ ((𝐶 × 𝐷) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∃wex 1783 ∈ wcel 2108 ⊆ wss 3883 class class class wbr 5070 {copab 5132 × cxp 5578 ∘ ccom 5584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-co 5589 |
This theorem is referenced by: bj-imdirco 35288 |
Copyright terms: Public domain | W3C validator |