Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-xpcossxp Structured version   Visualization version   GIF version

Theorem bj-xpcossxp 37184
Description: The composition of two Cartesian products is included in the expected Cartesian product. There is equality if (𝐵𝐶) ≠ ∅, see xpcogend 14947. (Contributed by BJ, 22-May-2024.)
Assertion
Ref Expression
bj-xpcossxp ((𝐶 × 𝐷) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐷)

Proof of Theorem bj-xpcossxp
Dummy variables 𝑥 𝑦 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brxp 5690 . . . . . . 7 (𝑥(𝐴 × 𝐵)𝑦 ↔ (𝑥𝐴𝑦𝐵))
2 brxp 5690 . . . . . . 7 (𝑦(𝐶 × 𝐷)𝑡 ↔ (𝑦𝐶𝑡𝐷))
31, 2anbi12i 628 . . . . . 6 ((𝑥(𝐴 × 𝐵)𝑦𝑦(𝐶 × 𝐷)𝑡) ↔ ((𝑥𝐴𝑦𝐵) ∧ (𝑦𝐶𝑡𝐷)))
4 an43 658 . . . . . 6 (((𝑥𝐴𝑦𝐵) ∧ (𝑦𝐶𝑡𝐷)) ↔ ((𝑥𝐴𝑡𝐷) ∧ (𝑦𝐵𝑦𝐶)))
53, 4bitri 275 . . . . 5 ((𝑥(𝐴 × 𝐵)𝑦𝑦(𝐶 × 𝐷)𝑡) ↔ ((𝑥𝐴𝑡𝐷) ∧ (𝑦𝐵𝑦𝐶)))
65exbii 1848 . . . 4 (∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐶 × 𝐷)𝑡) ↔ ∃𝑦((𝑥𝐴𝑡𝐷) ∧ (𝑦𝐵𝑦𝐶)))
7 19.42v 1953 . . . . 5 (∃𝑦((𝑥𝐴𝑡𝐷) ∧ (𝑦𝐵𝑦𝐶)) ↔ ((𝑥𝐴𝑡𝐷) ∧ ∃𝑦(𝑦𝐵𝑦𝐶)))
87simplbi 497 . . . 4 (∃𝑦((𝑥𝐴𝑡𝐷) ∧ (𝑦𝐵𝑦𝐶)) → (𝑥𝐴𝑡𝐷))
96, 8sylbi 217 . . 3 (∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐶 × 𝐷)𝑡) → (𝑥𝐴𝑡𝐷))
109ssopab2i 5513 . 2 {⟨𝑥, 𝑡⟩ ∣ ∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐶 × 𝐷)𝑡)} ⊆ {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐴𝑡𝐷)}
11 df-co 5650 . 2 ((𝐶 × 𝐷) ∘ (𝐴 × 𝐵)) = {⟨𝑥, 𝑡⟩ ∣ ∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐶 × 𝐷)𝑡)}
12 df-xp 5647 . 2 (𝐴 × 𝐷) = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐴𝑡𝐷)}
1310, 11, 123sstr4i 4001 1 ((𝐶 × 𝐷) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wex 1779  wcel 2109  wss 3917   class class class wbr 5110  {copab 5172   × cxp 5639  ccom 5645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-co 5650
This theorem is referenced by:  bj-imdirco  37185
  Copyright terms: Public domain W3C validator