|   | Mathbox for BJ | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-xpcossxp | Structured version Visualization version GIF version | ||
| Description: The composition of two Cartesian products is included in the expected Cartesian product. There is equality if (𝐵 ∩ 𝐶) ≠ ∅, see xpcogend 15013. (Contributed by BJ, 22-May-2024.) | 
| Ref | Expression | 
|---|---|
| bj-xpcossxp | ⊢ ((𝐶 × 𝐷) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐷) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | brxp 5734 | . . . . . . 7 ⊢ (𝑥(𝐴 × 𝐵)𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 2 | brxp 5734 | . . . . . . 7 ⊢ (𝑦(𝐶 × 𝐷)𝑡 ↔ (𝑦 ∈ 𝐶 ∧ 𝑡 ∈ 𝐷)) | |
| 3 | 1, 2 | anbi12i 628 | . . . . . 6 ⊢ ((𝑥(𝐴 × 𝐵)𝑦 ∧ 𝑦(𝐶 × 𝐷)𝑡) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ∧ 𝑡 ∈ 𝐷))) | 
| 4 | an43 658 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ∧ 𝑡 ∈ 𝐷)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐷) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
| 5 | 3, 4 | bitri 275 | . . . . 5 ⊢ ((𝑥(𝐴 × 𝐵)𝑦 ∧ 𝑦(𝐶 × 𝐷)𝑡) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐷) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | 
| 6 | 5 | exbii 1848 | . . . 4 ⊢ (∃𝑦(𝑥(𝐴 × 𝐵)𝑦 ∧ 𝑦(𝐶 × 𝐷)𝑡) ↔ ∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐷) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | 
| 7 | 19.42v 1953 | . . . . 5 ⊢ (∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐷) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐷) ∧ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
| 8 | 7 | simplbi 497 | . . . 4 ⊢ (∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐷) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) → (𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐷)) | 
| 9 | 6, 8 | sylbi 217 | . . 3 ⊢ (∃𝑦(𝑥(𝐴 × 𝐵)𝑦 ∧ 𝑦(𝐶 × 𝐷)𝑡) → (𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐷)) | 
| 10 | 9 | ssopab2i 5555 | . 2 ⊢ {〈𝑥, 𝑡〉 ∣ ∃𝑦(𝑥(𝐴 × 𝐵)𝑦 ∧ 𝑦(𝐶 × 𝐷)𝑡)} ⊆ {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐷)} | 
| 11 | df-co 5694 | . 2 ⊢ ((𝐶 × 𝐷) ∘ (𝐴 × 𝐵)) = {〈𝑥, 𝑡〉 ∣ ∃𝑦(𝑥(𝐴 × 𝐵)𝑦 ∧ 𝑦(𝐶 × 𝐷)𝑡)} | |
| 12 | df-xp 5691 | . 2 ⊢ (𝐴 × 𝐷) = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐷)} | |
| 13 | 10, 11, 12 | 3sstr4i 4035 | 1 ⊢ ((𝐶 × 𝐷) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐷) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∧ wa 395 ∃wex 1779 ∈ wcel 2108 ⊆ wss 3951 class class class wbr 5143 {copab 5205 × cxp 5683 ∘ ccom 5689 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-xp 5691 df-co 5694 | 
| This theorem is referenced by: bj-imdirco 37191 | 
| Copyright terms: Public domain | W3C validator |