Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-xpcossxp Structured version   Visualization version   GIF version

Theorem bj-xpcossxp 35287
Description: The composition of two Cartesian products is included in the expected Cartesian product. There is equality if (𝐵𝐶) ≠ ∅, see xpcogend 14613. (Contributed by BJ, 22-May-2024.)
Assertion
Ref Expression
bj-xpcossxp ((𝐶 × 𝐷) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐷)

Proof of Theorem bj-xpcossxp
Dummy variables 𝑥 𝑦 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brxp 5627 . . . . . . 7 (𝑥(𝐴 × 𝐵)𝑦 ↔ (𝑥𝐴𝑦𝐵))
2 brxp 5627 . . . . . . 7 (𝑦(𝐶 × 𝐷)𝑡 ↔ (𝑦𝐶𝑡𝐷))
31, 2anbi12i 626 . . . . . 6 ((𝑥(𝐴 × 𝐵)𝑦𝑦(𝐶 × 𝐷)𝑡) ↔ ((𝑥𝐴𝑦𝐵) ∧ (𝑦𝐶𝑡𝐷)))
4 an43 654 . . . . . 6 (((𝑥𝐴𝑦𝐵) ∧ (𝑦𝐶𝑡𝐷)) ↔ ((𝑥𝐴𝑡𝐷) ∧ (𝑦𝐵𝑦𝐶)))
53, 4bitri 274 . . . . 5 ((𝑥(𝐴 × 𝐵)𝑦𝑦(𝐶 × 𝐷)𝑡) ↔ ((𝑥𝐴𝑡𝐷) ∧ (𝑦𝐵𝑦𝐶)))
65exbii 1851 . . . 4 (∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐶 × 𝐷)𝑡) ↔ ∃𝑦((𝑥𝐴𝑡𝐷) ∧ (𝑦𝐵𝑦𝐶)))
7 19.42v 1958 . . . . 5 (∃𝑦((𝑥𝐴𝑡𝐷) ∧ (𝑦𝐵𝑦𝐶)) ↔ ((𝑥𝐴𝑡𝐷) ∧ ∃𝑦(𝑦𝐵𝑦𝐶)))
87simplbi 497 . . . 4 (∃𝑦((𝑥𝐴𝑡𝐷) ∧ (𝑦𝐵𝑦𝐶)) → (𝑥𝐴𝑡𝐷))
96, 8sylbi 216 . . 3 (∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐶 × 𝐷)𝑡) → (𝑥𝐴𝑡𝐷))
109ssopab2i 5456 . 2 {⟨𝑥, 𝑡⟩ ∣ ∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐶 × 𝐷)𝑡)} ⊆ {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐴𝑡𝐷)}
11 df-co 5589 . 2 ((𝐶 × 𝐷) ∘ (𝐴 × 𝐵)) = {⟨𝑥, 𝑡⟩ ∣ ∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐶 × 𝐷)𝑡)}
12 df-xp 5586 . 2 (𝐴 × 𝐷) = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐴𝑡𝐷)}
1310, 11, 123sstr4i 3960 1 ((𝐶 × 𝐷) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wex 1783  wcel 2108  wss 3883   class class class wbr 5070  {copab 5132   × cxp 5578  ccom 5584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-co 5589
This theorem is referenced by:  bj-imdirco  35288
  Copyright terms: Public domain W3C validator