MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzuzb Structured version   Visualization version   GIF version

Theorem elfzuzb 12896
Description: Membership in a finite set of sequential integers in terms of sets of upper integers. (Contributed by NM, 18-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzuzb (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)))

Proof of Theorem elfzuzb
StepHypRef Expression
1 df-3an 1086 . . 3 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)) ↔ (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑀𝐾𝐾𝑁)))
2 an6 1442 . . 3 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)))
3 df-3an 1086 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ))
4 anandir 676 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)))
5 an43 657 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ)))
63, 4, 53bitri 300 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ)))
76anbi1i 626 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)) ↔ (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑀𝐾𝐾𝑁)))
81, 2, 73bitr4ri 307 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁)))
9 elfz2 12892 . 2 (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)))
10 eluz2 12237 . . 3 (𝐾 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾))
11 eluz2 12237 . . 3 (𝑁 ∈ (ℤ𝐾) ↔ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁))
1210, 11anbi12i 629 . 2 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁)))
138, 9, 123bitr4i 306 1 (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1084  wcel 2111   class class class wbr 5030  cfv 6324  (class class class)co 7135  cle 10665  cz 11969  cuz 12231  ...cfz 12885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-neg 10862  df-z 11970  df-uz 12232  df-fz 12886
This theorem is referenced by:  eluzfz  12897  elfzuz  12898  elfzuz3  12899  elfzuz2  12907  peano2fzr  12915  fzsplit2  12927  fzass4  12940  fzss1  12941  fzss2  12942  ssfzunsnext  12947  fzp1elp1  12955  fznn  12970  elfz2nn0  12993  elfzofz  13048  fzosplitsnm1  13107  fzofzp1b  13130  fzosplitsn  13140  seqcl2  13384  seqfveq2  13388  monoord  13396  seqid2  13412  bcn1  13669  fz1isolem  13815  seqcoll  13818  ccatrn  13934  swrds1  14019  swrdccat2  14022  spllen  14107  splfv2a  14109  splval2  14110  caubnd  14710  isercolllem2  15014  isercolllem3  15015  summolem2a  15064  fsum0diag2  15130  climcndslem1  15196  mertenslem1  15232  prodmolem2a  15280  vdwlem2  16308  vdwlem8  16314  gexcl3  18704  efginvrel2  18845  efgredleme  18861  efgcpbllemb  18873  1stckgenlem  22158  imasdsf1olem  22980  iscmet3lem1  23895  dvtaylp  24965  mtest  24999  ppisval  25689  ppisval2  25690  chtdif  25743  ppidif  25748  logfaclbnd  25806  bposlem4  25871  dchrisumlem2  26074  pntpbnd1  26170  fzsplit3  30543  mettrifi  35195  monoordxrv  42121  smonoord  43888
  Copyright terms: Public domain W3C validator