![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfzuzb | Structured version Visualization version GIF version |
Description: Membership in a finite set of sequential integers in terms of sets of upper integers. (Contributed by NM, 18-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzuzb | ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1086 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) ↔ (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
2 | an6 1442 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ≤ 𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
3 | df-3an 1086 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ)) | |
4 | anandir 675 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ))) | |
5 | an43 656 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))) | |
6 | 3, 4, 5 | 3bitri 296 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))) |
7 | 6 | anbi1i 622 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) ↔ (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
8 | 1, 2, 7 | 3bitr4ri 303 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ≤ 𝑁))) |
9 | elfz2 13537 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
10 | eluz2 12872 | . . 3 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾)) | |
11 | eluz2 12872 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) ↔ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ≤ 𝑁)) | |
12 | 10, 11 | anbi12i 626 | . 2 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ≤ 𝑁))) |
13 | 8, 9, 12 | 3bitr4i 302 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∧ w3a 1084 ∈ wcel 2099 class class class wbr 5144 ‘cfv 6544 (class class class)co 7414 ≤ cle 11288 ℤcz 12602 ℤ≥cuz 12866 ...cfz 13530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5295 ax-nul 5302 ax-pr 5424 ax-un 7736 ax-cnex 11203 ax-resscn 11204 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ral 3052 df-rex 3061 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-iun 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7993 df-2nd 7994 df-neg 11486 df-z 12603 df-uz 12867 df-fz 13531 |
This theorem is referenced by: eluzfz 13542 elfzuz 13543 elfzuz3 13544 elfzuz2 13552 peano2fzr 13560 fzsplit2 13572 fzass4 13585 fzss1 13586 fzss2 13587 fzp1elp1 13600 fznn 13615 elfz2nn0 13638 elfzofz 13694 fzosplitsnm1 13753 fzofzp1b 13777 fzosplitsn 13787 seqcl2 14032 seqfveq2 14036 monoord 14044 seqid2 14060 bcn1 14323 fz1isolem 14473 seqcoll 14476 ccatrn 14590 swrds1 14667 swrdccat2 14670 spllen 14755 splfv2a 14757 splval2 14758 caubnd 15356 isercolllem2 15663 isercolllem3 15664 summolem2a 15712 fsum0diag2 15780 climcndslem1 15846 mertenslem1 15881 prodmolem2a 15929 vdwlem2 16977 vdwlem8 16983 gexcl3 19579 efginvrel2 19719 efgredleme 19735 efgcpbllemb 19747 1stckgenlem 23543 imasdsf1olem 24365 iscmet3lem1 25305 dvtaylp 26393 mtest 26428 ppisval 27127 ppisval2 27128 chtdif 27181 ppidif 27186 logfaclbnd 27246 bposlem4 27311 dchrisumlem2 27514 pntpbnd1 27610 fzsplit3 32697 mettrifi 37469 monoordxrv 45131 smonoord 46977 |
Copyright terms: Public domain | W3C validator |