MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzuzb Structured version   Visualization version   GIF version

Theorem elfzuzb 13421
Description: Membership in a finite set of sequential integers in terms of sets of upper integers. (Contributed by NM, 18-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzuzb (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)))

Proof of Theorem elfzuzb
StepHypRef Expression
1 df-3an 1088 . . 3 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)) ↔ (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑀𝐾𝐾𝑁)))
2 an6 1447 . . 3 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)))
3 df-3an 1088 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ))
4 anandir 677 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)))
5 an43 658 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ)))
63, 4, 53bitri 297 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ)))
76anbi1i 624 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)) ↔ (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑀𝐾𝐾𝑁)))
81, 2, 73bitr4ri 304 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁)))
9 elfz2 13417 . 2 (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)))
10 eluz2 12741 . . 3 (𝐾 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾))
11 eluz2 12741 . . 3 (𝑁 ∈ (ℤ𝐾) ↔ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁))
1210, 11anbi12i 628 . 2 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁)))
138, 9, 123bitr4i 303 1 (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086  wcel 2109   class class class wbr 5092  cfv 6482  (class class class)co 7349  cle 11150  cz 12471  cuz 12735  ...cfz 13410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-neg 11350  df-z 12472  df-uz 12736  df-fz 13411
This theorem is referenced by:  eluzfz  13422  elfzuz  13423  elfzuz3  13424  elfzuz2  13432  peano2fzr  13440  fzsplit2  13452  fzass4  13465  fzss1  13466  fzss2  13467  fzp1elp1  13480  fznn  13495  elfz2nn0  13521  elfzofz  13578  fzosplitsnm1  13643  fzofzp1b  13668  fzosplitsn  13678  seqcl2  13927  seqfveq2  13931  monoord  13939  seqid2  13955  bcn1  14220  fz1isolem  14368  seqcoll  14371  ccatrn  14496  swrds1  14573  swrdccat2  14576  spllen  14660  splfv2a  14662  splval2  14663  caubnd  15266  isercolllem2  15573  isercolllem3  15574  summolem2a  15622  fsum0diag2  15690  climcndslem1  15756  mertenslem1  15791  prodmolem2a  15841  vdwlem2  16894  vdwlem8  16900  gexcl3  19466  efginvrel2  19606  efgredleme  19622  efgcpbllemb  19634  1stckgenlem  23438  imasdsf1olem  24259  iscmet3lem1  25189  dvtaylp  26276  mtest  26311  ppisval  27012  ppisval2  27013  chtdif  27066  ppidif  27071  logfaclbnd  27131  bposlem4  27196  dchrisumlem2  27399  pntpbnd1  27495  fzsplit3  32745  mettrifi  37757  monoordxrv  45480  smonoord  47375
  Copyright terms: Public domain W3C validator