MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  an3 Structured version   Visualization version   GIF version

Theorem an3 655
Description: A rearrangement of conjuncts. (Contributed by Rodolfo Medina, 25-Sep-2010.)
Assertion
Ref Expression
an3 (((𝜑𝜓) ∧ (𝜒𝜃)) → (𝜑𝜃))

Proof of Theorem an3
StepHypRef Expression
1 an43 654 . 2 (((𝜑𝜓) ∧ (𝜒𝜃)) ↔ ((𝜑𝜃) ∧ (𝜓𝜒)))
21simplbi 497 1 (((𝜑𝜓) ∧ (𝜒𝜃)) → (𝜑𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  catideu  17301  usgredg2v  27497  prtlem15  36816  clsk1indlem3  41542  poprelb  44864
  Copyright terms: Public domain W3C validator