| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an3 | Structured version Visualization version GIF version | ||
| Description: A rearrangement of conjuncts. (Contributed by Rodolfo Medina, 25-Sep-2010.) |
| Ref | Expression |
|---|---|
| an3 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → (𝜑 ∧ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an43 658 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜒))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → (𝜑 ∧ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: catideu 17687 usgredg2v 29206 trressn 38463 prtlem15 38893 clsk1indlem3 44067 poprelb 47538 |
| Copyright terms: Public domain | W3C validator |